О численном моделировании плазменных колебаний с учетом нестандартной вязкости
Авторы
-
О. С. Розанова
-
Е. В. Чижонков
Ключевые слова:
численное моделирование
нерелятивистские колебания
нестандартная вязкость
неявная схема Мак-Кормака
бегущие волны
Аннотация
Численно анализируется влияние нестандартной вязкости на нерелятивистские колебания холодной плазмы. Нестандартная вязкость может быть интерпретирована как следствие небольшого нагрева электронов при использовании баротропной модели. Для расчетов построена неявная разностная схема типа Мак-Кормака, имеющая более слабое ограничение на устойчивость, чем явная схема, и реализуемая без итераций, что увеличивает ее вычислительную эффективность в десятки раз. Показано, что учет нестандартной вязкости плазмы может быть причиной формирования бегущих волн солитонного типа.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- S. I. Braginskii, “Transfer Phenomena in Plasma,” in Problems in the Theory of Plasma (Gosatomizdat, Moscow, 1963), Vol. 1, pp. 183-285 [in Russian].
- A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer, Berlin, 1984).
- V. L. Ginsburg and A. A. Rukhadze, Waves in Magnetoactive Plasma(Nauka, Moscow, 1975) [in Russian].
- V. P. Silin, Introduction to the Kinetic Theory of Gases(Nauka, Moscow, 1971) [in Russian].
- V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media(Librokom, Moscow, 2012) [in Russian].
- E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of Laser-Driven Plasma-Based Electron Accelerators,” Rev. Mod. Phys. 81 (3), 1229-1285 (2009).
doi 10.1103/RevModPhys.81.1229
- S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, et al., “On Some Theoretical Problems of Laser Wake-Field Accelerators,” J. Plasma Phys. 82 (3), Article Number 905820308 (2016).
doi 10.1017/S0022377816000623
- L. M. Gorbunov, “Why Do We Need Super-Powerful Laser Pulses?’’ Priroda 21 (4), 11-20 (2007).
- E. V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma(Fizmatlit, Moscow, 2018; CRC Press, Boca Raton, 2019).
- A. A. Skorupski and E. Infeld, “Nonlinear Electron Oscillations in a Viscous and Resistive Plasma,” Phys. Rev. E. 81 (5), Article Number 056406 (2010).
doi 10.1103/PhysRevE.81.056406
- E. V. Chizhonkov and A. A. Frolov, “Effect of Electron Temperature on Formation of Travelling Waves in Plasma: Kinetic and Hydrodynamic Models,” Rus. J. Numer. Anal. Math. Model. 38 (2), 63-74 (2023).
doi 10.1515/rnam-2023-0006
- O. Rozanova, E. Chizhonkov, and M. Delova, “Exact Thresholds in the Dynamics of Cold Plasma with Electron-Ion Collisions,” AIP Conf. Proc. 2302, Article Number 060012 (2020).
doi 10.1063/5.0033619
- E. V. Chizhonkov, M. I. Delova, and O. S. Rozanova, “High Precision Methods for Solving a System of Cold Plasma Equations Taking into Account Electron-Ion Collisions,” Rus. J. Numer. Anal. Math. Model. 36 (3), 139-155 (2021).
doi 10.1515/rnam-2021-0012
- E. V. Chizhonkov, “Numerical Modeling of Oscillations in a Cold but Viscous Plasma,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh. No. 4, 32-41 (2024) [Moscow Univ. Math. Bull. 79 (4), 182-191 (2024)].
doi 10.3103/S0027132224700244
- A. G. Kulikovskii, N. V. Pogorelov, and A. Y. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems(Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
- R. W. MacCormack, “A Numerical Method for Solving the Equations of Compressible Viscous Flow,” AIAA J. 1982. 20 (9), 1275-1281 (1982).
- R. C. Davidson, Methods in Nonlinear Plasma Theory(Academic Press, New York, 1972).
- O. S. Rozanova and E. V. Chizhonkov, “On the Existence of a Global Solution of a Hyperbolic Problem,” Dokl. Akad. Nauk 492 (1), 97-100 (2020) [Dokl. Math. 101 (3), 254-256 (2020)].
doi 10.1134/S1064562420030163
- O. S. Rozanova and E. V. Chizhonkov, “On the Conditions for the Breaking of Oscillations in a Cold Plasma,” Z. Angew. Math. Phys. 72 (1), Article Number 13 (2021).
doi 10.1007/s00033-020-01440-3
- O. S. Rozanova and E. V. Chizhonkov, “Analytical and Numerical Solutions of One-Dimensional Cold Plasma Equations,” Zh. Vychisl. Mat. Mat. Fiz. 61 (9), 1508-1527 (2021) [Comput. Math. Math. Phys. 61 (9), 1485-1503 (2021)].
doi 10.1134/S0965542521090141
- C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics(Springer, Berlin, 2016).
- C. J. R. Sheppard, “Cylindrical Lenses -- Focusing and Imaging: A Review [Invited],” Appl. Opt. 52 (4), 538-545 (2013).
doi 10.1364/AO.52.000538
- Yu. I. Shokin and N. N. Yanenko, The Method of Differential Approximation. Application to Gas Dynamics(Nauka, Novosibirsk, 1985) [in Russian].
- J. Fürst and P. Furmánek, “An Implicit MacCormack Scheme for Unsteady Flow Calculations,” Comput. Fluids 46 (1), 231-236 (2011).
doi 10.1016/j.compfluid.2010.09.036
- A. A. Frolov and E. V. Chizhonkov, “On the Numerical Simulation of Traveling Langmuir Waves in Warm Plasma,” Mat. Model. 35 (11), 21-34 (2023) [Math. Models Comput. Simul. 16 (2), 169-176 (2024)].
doi 10.1134/S207004822402008X
- A. A. Frolov and E. V. Chizhonkov, “Application of the Energy Conservation Law in the Cold Plasma Model,” Zh. Vychisl. Mat. Mat. Fiz. 60 (3), 503-519 (2020) [Comput. Math. Math. Phys. 60 (3), 498-513 (2020)].
doi 10.1134/S0965542520030094
- O. Rozanova, “On Nonstrictly Hyperbolic Systems and Models of Natural Sciences Reducible to Them,” AIP Conf. Proc. 2953, Article Number 040011, 040011-1-040011-13 (2023).
doi 10.1063/5.0177487
- B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, “Numerical Solutions for Unsteady Gravity-Driven Flows in Collapsible Tubes: Evolution and Roll-Wave Instability of a Steady State,” J. Fluid Mech. 396, 223-256 (1999).
doi 10.1017/S0022112099006084
- S. J. Sherwin, L. Formaggia, J. Peiró, and V. Franke, “Computational Modelling of 1D Blood Flow with Variable Mechanical Properties and Its Application to the Simulation of Wave Propagation in the Human Arterial System,” Int. J. Numer. Meth. Fluids 43 (6-7), 673-700 (2003).
doi 10.1002/fld.543