DOI: https://doi.org/10.26089/NumMet.v25r433

Анализ эффективности регулирования численной диссипации при компьютерном моделировании динамики газа и газовзвесей

Авторы

  • Е. Н. Широкова
  • Д. В. Садин

Ключевые слова:

компьютерные технологии
гибридный метод крупных частиц
диссипативные свойства

Аннотация

Работа посвящена изучению диссипативных свойств гибридного метода крупных частиц второго порядка аппроксимации. Регуляризация численного решения обеспечена двумя способами: нелинейной коррекцией искусственной вязкости (на эйлеровом этапе) и гибридной аппроксимацией пространственных производных за счет использования различных нелинейных ограничительных функций (на лагранжевом этапе). Диссипативные свойства метода продемонстрированы на примере задачи Сода, ее модификации с отражением ударной волны от стенки. Изучено течение газовзвеси при распаде произвольного разрыва с малым начальным отношением давлений при различных числах Стокса. Численные решения сопоставлены с асимптотически точными решениями.


Загрузки

Опубликован

2024-11-08

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Авторы

Е. Н. Широкова

Военно-космическая академия имени А.Ф. Можайского
ул. Ждановская, д. 13, 197198, Санкт-Петербург
• преподаватель

Д. В. Садин

Военно-космическая академия имени А.Ф. Можайского
ул. Ждановская, д. 13, 197198, Санкт-Петербург
• профессор


Библиографические ссылки

  1. T. Da Calva Mouillevois, M. Audren-Paul, G. Chollon, and N. Bertrand, “Fluidization of Variable Short Fiber/Powder Mixtures: Hydrodynamic Investigation,” Chem. Eng. J. 471, Article Number 144846 (2023).
    doi 10.1016/j.cej.2023.144846
  2. F. Wéry, L. A. Vandewalle, G. B. Marin, et al., “Hydrodynamic CFD-DEM Model Validation in a Gas-Solid Vortex Unit,” Chem. Eng. J. 455, Article Number 140529 (2023).
    doi 10.1016/j.cej.2022.140529
  3. D. Gubaidullin, V. L. Fedyaev, and I. Morenko, “Mathematical Modeling of Non-Isothermal Process of the Jet Spraying of Powder Polymeric Compositions and the Formation of Protective Coatings,” Physical-Chemical Kinetics in Gas Dynamics. 17 (4) (2016).
    http://chemphys.edu.ru/issues/2016-17-4/articles/656/. Cited October 27, 2024.
  4. E. N. Shirokova, “Numerical Study of a Pulsed Jet Flow of an Inhomogeneous Gas-Dispersed Mixture,” Fluid Dyn. 58 (8), 1594-1601 (2023).
    doi 10.1134/S0015462823602590
  5. S. A. Tokareva and E. F. Toro, “HLLC-Type Riemann Solver for the Baer-Nunziato Equations of Compressible Two-Phase Flow,” J. Comput. Phys. 229 (10), 3573-3604 (2010).
    doi 10.1016/j.jcp.2010.01.016
  6. D. A. Gubaidullin and D. A. Tukmakov, “Numerical Investigation of the Evolution of a Shock Wave in a Gas Suspension with Consideration for the Nonuniform Distribution of the Particles,” Mat. Model. 26 (10), 109-119 (2014) [Math. Models Comput. Simul. 7 (3), 246-253 (2015)].
    doi 10.1134/S2070048215030072
  7. F. Kummer, “Extended Discontinuous Galerkin Methods for Two-Phase Flows: The Spatial Discretization,” Int. J. Numer. Methods Eng. 109 (2), 259-289 (2016).
    doi 10.1002/nme.5288
  8. D. S. Balsara, D. Bhoriya, C.-W. Shu, et al., “Efficient Finite Difference WENO Scheme for Hyperbolic Systems with Non-conservative Products,” Commun. Appl. Math. Comput. 6 (2), 907-962 (2024).
    doi 10.1007/s42967-023-00275-9
  9. D. V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2098-2109 (2016) [Comput. Math. Math. Phys. 56 (12), 2068-2078 (2016)].
    doi 10.1134/S0965542516120137
  10. O. M. Belotserkovskii and Yu. M. Davydov, “A Non-Stationary “Coarse Particle” Method for Gas-Dynamical Computations,” Zh. Vychisl. Mat. Mat. Fiz. 11 (1), 182-207 (1971) [USSR Comput. Math. Math. Phys. 11 (1), 241-271 (1971)].
    doi 10.1016/0041-5553(71)90112-1
  11. A. A. Gubaidullin, A. I. Ivandaev, and R. I. Nigmatulin, “A Modified “Coarse Particle” Method for Calculating Non-Stationary Wave Processes in Multiphase Dispersive Media,” Zh. Vychisl. Mat. Mat. Fiz. 17 (6), 1531-1544 (1977) [USSR Comput. Math. Math. Phys. 17 (6), 180-192 (1977)].
    doi 10.1016/0041-5553(77)90183-5
  12. Yu. M. Kovalev and P. A. Kuznetsov, “Modification of the Large-Particle Method to Solve Shock Waves and Rarefaction Waves Propagation,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 12 (2), 58-66 (2019).
    doi 10.14529/mmp190205
  13. D. V. Sadin, “Efficient Implementation of the Hybrid Large Particle Method,” Mat. Model. 34 (4), 113-127 (2022) [Math. Models Comput. Simul. 14 (6), 946-954 (2022)].
    doi 10.1134/S207004822206014X
  14. E. S. Shestakovskaya, Ya. E. Starikov, and I. R. Makeeva, “On a Lagrangian-Eulerian Method Calculation of Unsteady Flows Compressible Media,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 16 (2), 78-90 (2023).
    doi 10.14529/mmp230208
  15. Yu. N. Grigor’ev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation by Particle-in-Cell Methods(Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].
  16. E. V. Chizhonkov, “On Errors in the PIC-Method when Modeling Langmuir Oscillations,” Numerical Methods and Programming. 25 (1), 47-63 (2024).
    doi 10.26089/NumMet.v25r105
  17. S. S. Khrapov, A. V. Khoperskov, N. M. Kuz’min, et al., “A Numerical Scheme for Simulating the Dynamics of Surface Water on the Basis of the Combined SPH-TVD Approach,” Numerical Methods and Programming 12 (2), 282-297 (2011).
  18. O. Stoyanovskaya, M. Davydov, M. Arendarenko, et al., “Fast Method to Simulate Dynamics of Two-Phase Medium with Intense Interaction between Phases by Smoothed Particle Hydrodynamics: Gas-Dust Mixture with Polydisperse Particles, Linear Drag, One-Dimensional Tests,” J. Comput. Phys. 430, Article Number 110035 (2021).
    doi 10.1016/j.jcp.2020.110035
  19. C. Zhang, Y.-J. Zhu, D. Wu, et al., “Smoothed Particle Hydrodynamics: Methodology Development and Recent Achievement,” J. Hydrodyn. 34 (5), 767-805 (2022).
    doi 10.1007/s42241-022-0052-1
  20. R. I. Nigmatulin, Dynamics of Multiphase Media. Part 1(Nauka, Moscow, 1987; Hemisphere, New York, 1990).
  21. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics(Nauka, Moscow, 1978; Amer. Math. Society, Providence, 1983).
  22. D. V. Sadin, “Test Problems of Gas Suspension Dynamics Using Asymptotically Exact Solutions,” Mat. Model. 34 (12), 59-74 (2022) [Math. Models Comput. Simul. 15 (3), 564-573 (2023)].
    doi 10.1134/S2070048223030158
  23. X. Liu, S. Zhang, H. Zhang, and C.-W. Shu, “A New Class of Central Compact Schemes with Spectral-Like Resolution II: Hybrid Weighted Nonlinear Schemes,” J. Comput. Phys. 284, 133-154 (2015).
    doi 10.1016/j.jcp.2014.12.027
  24. S. Pirozzoli, “Numerical Methods for High-Speed Flows,” Annu. Rev. Fluid Mech. 43, 163-194 (2011).
    doi 10.1146/annurev-fluid-122109-160718
  25. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics(Springer, Berlin, 2009).
  26. D. A. Tukmakov, “Comparison of Computer Implementations of the Equilibrium and Continuous Modeling Techniques for Multiphase Media on the Example of a One-Dimensional Unsteady Flow of a Gas Suspension,” Vestn. Yuzhn. Ural Gos. Univ. Ser. Comput. Tekhnol., Automatic Control, Radio Electronics. 23 (3), 59-75 (2023).
    doi 10.14529/ctcr230306