Анализ эффективности регулирования численной диссипации при компьютерном моделировании динамики газа и газовзвесей
Авторы
-
Е. Н. Широкова
-
Д. В. Садин
Ключевые слова:
компьютерные технологии
гибридный метод крупных частиц
диссипативные свойства
Аннотация
Работа посвящена изучению диссипативных свойств гибридного метода крупных частиц второго порядка аппроксимации. Регуляризация численного решения обеспечена двумя способами: нелинейной коррекцией искусственной вязкости (на эйлеровом этапе) и гибридной аппроксимацией пространственных производных за счет использования различных нелинейных ограничительных функций (на лагранжевом этапе). Диссипативные свойства метода продемонстрированы на примере задачи Сода, ее модификации с отражением ударной волны от стенки. Изучено течение газовзвеси при распаде произвольного разрыва с малым начальным отношением давлений при различных числах Стокса. Численные решения сопоставлены с асимптотически точными решениями.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- T. Da Calva Mouillevois, M. Audren-Paul, G. Chollon, and N. Bertrand, “Fluidization of Variable Short Fiber/Powder Mixtures: Hydrodynamic Investigation,” Chem. Eng. J. 471, Article Number 144846 (2023).
doi 10.1016/j.cej.2023.144846
- F. Wéry, L. A. Vandewalle, G. B. Marin, et al., “Hydrodynamic CFD-DEM Model Validation in a Gas-Solid Vortex Unit,” Chem. Eng. J. 455, Article Number 140529 (2023).
doi 10.1016/j.cej.2022.140529
- D. Gubaidullin, V. L. Fedyaev, and I. Morenko, “Mathematical Modeling of Non-Isothermal Process of the Jet Spraying of Powder Polymeric Compositions and the Formation of Protective Coatings,” Physical-Chemical Kinetics in Gas Dynamics. 17 (4) (2016).
http://chemphys.edu.ru/issues/2016-17-4/articles/656/. Cited October 27, 2024.
- E. N. Shirokova, “Numerical Study of a Pulsed Jet Flow of an Inhomogeneous Gas-Dispersed Mixture,” Fluid Dyn. 58 (8), 1594-1601 (2023).
doi 10.1134/S0015462823602590
- S. A. Tokareva and E. F. Toro, “HLLC-Type Riemann Solver for the Baer-Nunziato Equations of Compressible Two-Phase Flow,” J. Comput. Phys. 229 (10), 3573-3604 (2010).
doi 10.1016/j.jcp.2010.01.016
- D. A. Gubaidullin and D. A. Tukmakov, “Numerical Investigation of the Evolution of a Shock Wave in a Gas Suspension with Consideration for the Nonuniform Distribution of the Particles,” Mat. Model. 26 (10), 109-119 (2014) [Math. Models Comput. Simul. 7 (3), 246-253 (2015)].
doi 10.1134/S2070048215030072
- F. Kummer, “Extended Discontinuous Galerkin Methods for Two-Phase Flows: The Spatial Discretization,” Int. J. Numer. Methods Eng. 109 (2), 259-289 (2016).
doi 10.1002/nme.5288
- D. S. Balsara, D. Bhoriya, C.-W. Shu, et al., “Efficient Finite Difference WENO Scheme for Hyperbolic Systems with Non-conservative Products,” Commun. Appl. Math. Comput. 6 (2), 907-962 (2024).
doi 10.1007/s42967-023-00275-9
- D. V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2098-2109 (2016) [Comput. Math. Math. Phys. 56 (12), 2068-2078 (2016)].
doi 10.1134/S0965542516120137
- O. M. Belotserkovskii and Yu. M. Davydov, “A Non-Stationary “Coarse Particle” Method for Gas-Dynamical Computations,” Zh. Vychisl. Mat. Mat. Fiz. 11 (1), 182-207 (1971) [USSR Comput. Math. Math. Phys. 11 (1), 241-271 (1971)].
doi 10.1016/0041-5553(71)90112-1
- A. A. Gubaidullin, A. I. Ivandaev, and R. I. Nigmatulin, “A Modified “Coarse Particle” Method for Calculating Non-Stationary Wave Processes in Multiphase Dispersive Media,” Zh. Vychisl. Mat. Mat. Fiz. 17 (6), 1531-1544 (1977) [USSR Comput. Math. Math. Phys. 17 (6), 180-192 (1977)].
doi 10.1016/0041-5553(77)90183-5
- Yu. M. Kovalev and P. A. Kuznetsov, “Modification of the Large-Particle Method to Solve Shock Waves and Rarefaction Waves Propagation,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 12 (2), 58-66 (2019).
doi 10.14529/mmp190205
- D. V. Sadin, “Efficient Implementation of the Hybrid Large Particle Method,” Mat. Model. 34 (4), 113-127 (2022) [Math. Models Comput. Simul. 14 (6), 946-954 (2022)].
doi 10.1134/S207004822206014X
- E. S. Shestakovskaya, Ya. E. Starikov, and I. R. Makeeva, “On a Lagrangian-Eulerian Method Calculation of Unsteady Flows Compressible Media,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 16 (2), 78-90 (2023).
doi 10.14529/mmp230208
- Yu. N. Grigor’ev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation by Particle-in-Cell Methods(Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].
- E. V. Chizhonkov, “On Errors in the PIC-Method when Modeling Langmuir Oscillations,” Numerical Methods and Programming. 25 (1), 47-63 (2024).
doi 10.26089/NumMet.v25r105
- S. S. Khrapov, A. V. Khoperskov, N. M. Kuz’min, et al., “A Numerical Scheme for Simulating the Dynamics of Surface Water on the Basis of the Combined SPH-TVD Approach,” Numerical Methods and Programming 12 (2), 282-297 (2011).
- O. Stoyanovskaya, M. Davydov, M. Arendarenko, et al., “Fast Method to Simulate Dynamics of Two-Phase Medium with Intense Interaction between Phases by Smoothed Particle Hydrodynamics: Gas-Dust Mixture with Polydisperse Particles, Linear Drag, One-Dimensional Tests,” J. Comput. Phys. 430, Article Number 110035 (2021).
doi 10.1016/j.jcp.2020.110035
- C. Zhang, Y.-J. Zhu, D. Wu, et al., “Smoothed Particle Hydrodynamics: Methodology Development and Recent Achievement,” J. Hydrodyn. 34 (5), 767-805 (2022).
doi 10.1007/s42241-022-0052-1
- R. I. Nigmatulin, Dynamics of Multiphase Media. Part 1(Nauka, Moscow, 1987; Hemisphere, New York, 1990).
- B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics(Nauka, Moscow, 1978; Amer. Math. Society, Providence, 1983).
- D. V. Sadin, “Test Problems of Gas Suspension Dynamics Using Asymptotically Exact Solutions,” Mat. Model. 34 (12), 59-74 (2022) [Math. Models Comput. Simul. 15 (3), 564-573 (2023)].
doi 10.1134/S2070048223030158
- X. Liu, S. Zhang, H. Zhang, and C.-W. Shu, “A New Class of Central Compact Schemes with Spectral-Like Resolution II: Hybrid Weighted Nonlinear Schemes,” J. Comput. Phys. 284, 133-154 (2015).
doi 10.1016/j.jcp.2014.12.027
- S. Pirozzoli, “Numerical Methods for High-Speed Flows,” Annu. Rev. Fluid Mech. 43, 163-194 (2011).
doi 10.1146/annurev-fluid-122109-160718
- E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics(Springer, Berlin, 2009).
- D. A. Tukmakov, “Comparison of Computer Implementations of the Equilibrium and Continuous Modeling Techniques for Multiphase Media on the Example of a One-Dimensional Unsteady Flow of a Gas Suspension,” Vestn. Yuzhn. Ural Gos. Univ. Ser. Comput. Tekhnol., Automatic Control, Radio Electronics. 23 (3), 59-75 (2023).
doi 10.14529/ctcr230306