DOI: https://doi.org/10.26089/NumMet.v25r429

Численное моделирование трехмерных нестационарных задач радиационной магнитной гидродинамики

Авторы

  • А. Ю. Круковский
  • Ю. А. Повещенко
  • В. О. Подрыга
  • П. И. Рагимли

Ключевые слова:

математическое моделирование
неявная полностью консервативная разностная схема
численные алгоритмы
вычислительный эксперимент
радиационная магнитная гидродинамика
плазма

Аннотация

В данной работе представлена математическая модель для решения трехмерных радиационных задач магнитной гидродинамики. Для решения системы дифференциальных уравнений применена неявная полностью консервативная разностная схема. Используется два метода решения системы разностных уравнений: метод раздельного и метод комбинированного решения уравнений, которые расщеплены по физическим процессам. Произведена программная реализация разработанных численных алгоритмов, выполнены расчеты, моделирующие сжатие плазмы магнитным полем. Изучалась динамика по времени параметров вещества и магнитного поля. В процессе расчета на его различных стадиях были задействованы оба используемых в программе численных метода. Полученные результаты соответствуют физике процесса.


Загрузки

Опубликован

2024-10-05

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Авторы

А. Ю. Круковский

Ю. А. Повещенко

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)

• профессор, ведущий научный сотрудник

В. О. Подрыга

П. И. Рагимли


Библиографические ссылки

  1. S. I. Braginskii, Problems of Plasma Theory, Vol. 1: Transport Phenomena in a Plasma (Atomizdat, Moscow, 1963)[in Russian].
  2. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(Nauka, Moscow, 1966) [in Russian].
  3. V. Ya. Goldin and B. N. Chetverushkin, “Methods for Solving One-Dimensional Problems of Radiation Gas Dynamics,” USSR Comput. Math. Math. Phys. 12 (4), 177-189 (1972).
    doi 10.1016/0041-5553(72)90122-X.
  4. A. I. Morozov and L. S. Soloviev, “Steady-state plasma flows in a magnetic field,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich(Atomizdat, Moscow, 1974), Vol. 8,  3-87 [in Russian].
  5. K. V. Brushlinskii and A. I. Morozov, “Calculation of two-dimensional plasma flows in channels,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich(Atomizdat, Moscow, 1974), Vol. 8,  88-163 [in Russian].
  6. N. Krall and A. Trivelpiece, Principles of Plasma Physics(Mir, Moscow, 1975) [in Russian].
  7. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Cosmic Plasma(Nauka, Moscow, 1977) [in Russian].
  8. G. I. Marchuk and V. I. Lebedev, Numerical Methods in the Theory of Neutron Transport(Atomizdat, Moscow, 1981) [in Russian].
  9. V. Ya. Goldin, “On mathematical modeling of continuum problems with non-equilibrium transport,” in Modern Problems of Mathematical Physics and Computational Mathematics(Nauka, Moscow, 1982),  13-127 [in Russian].
  10. J. Duderstadt and G. Moses, Inertial Confinement Fusion(New York: John Wiley& Sons, 1982).
  11. B. N. Chetverushkin, Mathematical Modeling of Radiating Gas Dynamics Problems (Nauka, Moscow, 1985) [in Russian].
  12. V. Ya. Goldin, D. A. Goldina, A. V. Kolpakov, and A. V. Shilkov, “Mathematical Modeling of Gas-Dynamic Processes at High Radiation Energy Density,” VANT, Ser. Methods and Programs for Numerical Solution of Mathematical Physics Problems, Vol. 2, 59-66 (1986) [in Russian].
  13. K. V. Brushlinskii, Mathematical and Computational Problems of Magnetohydrodynamics(Binom. Laboratoriya Znanii, Moscow, 2009) [in Russian].
  14. A. A. Samarskii and Yu. P. Popov, Finite Difference Methods for Solving Problems of Gas Dynamics (Moscow: Nauka, 1992) [in Russian].
  15. S. T. Surzhikov, Computational Experiment in Constructing Radiation Models of Radiating Gas Mechanics (Nauka, Moscow, 1992) [in Russian].
  16. V. Ya. Goldin, “Methods for Calculating Neutron Transfer and Burning in a Thermonuclear Device (1948-1960),” in Science and Society: History of the Soviet Atomic Project (40-50s) (Dubna, 1999), 2, pp. 497-501 [in Russian].
  17. S. T. Surzhikov, “Radiative Heat Transfer in Low-Temperature Plasma,” ENTP 1, 417-462 (2000) [in Russian].
  18. V. A. Gasilov, A. S. Chuvatin, A. Yu. Krukovsky, E. L. Kartasheva, et al., “A program Package &quotRazryad&quot: Modeling of Plasma Acceleration in Pulsed-Power Systems,” Matem. Modeling. textbf 15 (9), 107-124 (2003) [in Russian].
  19. S. T. Surzhikov, Thermal Radiation of Gases and Plasma (Bauman Moscow State Technical University Publishing, Moscow, 2004) [in Russian].
  20. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Radiation Magnetohydrodynamics: Analysis for Model Problems and Efficient 3d-Simulations for the Full System,” Analysis and Numerics for Conservation Laws, Ed. by G. Warnecke(Springer, Berlin, Heidelberg, 2005).
    doi 10.1007/3-540-27907-5_8.
  21. A. N. Kozlov, “Investigation of rotating plasma flows based on a two-dimensional single-fluid MHD model,” KIAM Preprints, textbf 69, 27 p. (2005) [in Russian].
  22. V. A. Gasilov and S. V. Dyachenko, “Quasi-monotone two-dimensional MHD scheme for unstructured grids,” Math. Models Comput. Simul. 17 (12), 87-109 (2005) [in Russian].
  23. D. O. Ustyugov, V. I. Mazhukin, and S. D. Ustyugov, “Modeling of laser plasma in an external magnetic field,” in Proc. IV Int. Sci. Seminar, “Mathematical Models and Modeling in Laser-Plasma Processes’’, Moscow, Russia, 2007(Moscow Humanitarian University, Moscow, 2007) [in Russian].
  24. V. B. Baranov, “Gas dynamics and magnetohydrodynamics of the interaction between interplanetary and interstellar media. Theory and experiment,” Izv. Saratov Univ. Math. Mech. Inform. 8 (3), 18-25 (2008) [in Russian].
  25. A. I. Morozov, Introduction to Plasmadynamics(Fizmatlit, Moscow, 2008) [in Russian].
  26. K. V. Brushlinskii, Mathematical and Computational Problems of Magnetohydrodynamics(Binom. Laboratoriya Znanii, Moscow, 2009) [in Russian].
  27. E. N. Aristova, Modeling the Interaction of Radiation with Matter. Application of the Quasi-Diffusion Method (Lambert Academic Publishing, Saarbrucken, 2011) [in Russian].
  28. S. T. Surzhikov, Hypersonic Flow of Rarefied Gas around a Surface Glow Discharge with an External Magnetic Field (IPMech RAS, Moscow, 2011) [in Russian].
  29. V. V. Chebotarev, T. N. Cherednychenko, D. V. Eliseev, et al., “MHD characteristics of compression zone in plasma stream generated by MPC,” Probl. At. Sci. Technol. 6, 123-125 (2012).
  30. S. T. Surzhikov, Radiation Gas Dynamics of Descent Spacecraft. Multi-Temperature Models (IPMech RAS, Moscow, 2013) [in Russian].
  31. A. N. Kozlov and V. S. Konovalov, “3D Model of Radiation Transfer in Ionizing Gas and Plasma Flows,” KIAM Preprints, 86, 32 p. (2016).
    doi 10.20948/prepr-2016-86 [in Russian].
  32. V. A. Gasilov, A. Yu. Krukovskiy, and I. P. Tsygvintsev, “Stable Algorithm for Matching the Fluxes of Momentum and Kinetic Energy during Remeshing,” KIAM Preprints. textbf 48, 11 p. (2017)
    doi 10.20948/prepr-2017-48 [in Russian].
  33. N. Ya. Moiseev, “Modified Method of Splitting by Physical Processes for Solving Radiation Gas Dynamics Equations,” Comput. Math. Math. Phys. 57 (2), 301-313 (2017).
    doi 10.1134/S0965542517020117
  34. Y. Tsukamoto, S. Okuzumi, K. Iwasaki, M. N. Machida, and S. Inutsuka, “The impact of the Hall effect during cloud core collapse: implications for circumstellar disk evolution,” PAS. 69 (6), 95 (2017).
    doi 10.1093/pasj/psx113.
  35. M. C. M. Cheung, M. Rempel, G. Chintzoglou, et al., A Comprehensive Three-Dimensional Radiative Magnetohydrodynamic Simulation of a Solar Flare(Nature Publishing Group, 2019).
    doi 10.1038/s41550-018-0629-3.
  36. A. Yu. Krukovskiy, Yu. A. Poveshchenko, L. V. Klochkova, and D. V. Suzan, “Convergence Assessment of Iterative Algorithms for Solving Three-Dimensional Nonstationary Problems of Magnetohydrodynamics,” KIAM Preprints. 94, 17 p. (2019)
    doi 10.20948/prepr-2017-94 [in Russian].
  37. S. Jin, M. Tang, and X. Zhang, “A spatial-temporal asymptotic preserving scheme for radiation magnetohydrodynamics in the equilibrium and non-equilibrium diffusion limit,” J. Comput. Phys. 452, 110895 (2022).
    doi 10.1016/j.jcp.2021.110895.
  38. A. Abbas, A. Khan, T. Abdeljawad, and M. Aslam, “Numerical simulation of variable density and magnetohydrodynamics effects on heat generating and dissipating Williamson Sakiadis flow in a porous space: Impact of solar radiation and Joule heating,” Heliyon. 9 (11), e21726 (2023).
    doi 10.1016/j.heliyon.2023.e21726.
  39. V. M. Goloviznin, A. A. Samarskii, and A. P. Favorskii, “Variational approach to the construction of finite-difference models in hydrodynamics,” Dokl. Akad. Nauk SSSR 235 (6), 1285-1288 (1977) [in Russian].
  40. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations(Nauka, Moscow, 1978) [in Russian].
  41. A. A. Samarskii and A. V. Gulin, Numerical Methods(Nauka, Moscow, 1989) [in Russian].
  42. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma and Methods for Calculating Rosseland Mean Free Paths and Equations of State(Fizmatlit, Moscow, 2000) [in Russian].