Сравнение модифицированного метода крупных частиц с некоторыми схемами высокой разрешающей способности. Двумерные тесты
DOI:
https://doi.org/10.26089/NumMet.v20r329Ключевые слова:
метод крупных частиц, высокая разрешающая способность, тестовые задачи, вычислительные свойстваАннотация
Исследуются вычислительные свойства предложенной ранее новой модификации метода крупных частиц на основе нелинейной коррекции искусственной вязкости на первом (эйлеровом) этапе и гибридизации потоков на втором (лагранжевом и заключительном) этапе, дополненной двухшаговым алгоритмом Рунге-Кутты по времени. Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. На примере тестовых задач сверхзвукового потока газа в канале со ступенькой и двойного маховского отражения подтверждена работоспособность и вычислительная эффективность метода в сравнении с современными схемами высокой разрешающей способности.
Библиографические ссылки
- P. Colella and P. R. Woodward, “The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations,” J. Comput. Phys. 54 (1), 174-201 (1984).
- G.-S. Jiang and C.-W. Shu, “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys. 126 (1), 202-228 (1996).
- B. Cockburn and C.-W. Shu, “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems,” J. Sci. Comput. 16 (3), 173-261 (2001).
- F. Kemm, “On the Proper Setup of the Double Mach Reflection as a Test Case for the Resolution of Gas Dynamics Codes,” Comput. Fluids 132, 72-75 (2016).
- I. Yu. Tagirova and A. V. Rodionov, “Application of Artificial Viscosity for Suppressing the Carbuncle Phenomenon in Godunov-Type Schemes,” Mat. Model. 27 (10), 47-64 (2015) [Math. Models Comput. Simul. 8 (3), 249-262 (2016)].
- D. V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2098-2109 (2016) [Comput. Math. Math. Phys. 56 (12), 2068-2078 (2016)].
- D. V. Sadin, “Schemes with Customizable Dissipative Properties as Applied to Gas-Suspensions Flow Simulation,” Mat. Model. 29 (12), 89-104 (2017).
- D. V. Sadin, “Application of Scheme with Customizable Dissipative Properties for Gas Flow Calculation with Interface Instability Evolution,” Nauch.-Tekhn. Vestn. Inform. Tekhnol. Mekhan. Optik. 18 (1), 153-157 (2018).
- D. V. Sadin and V. A. Davidchuk, “Comparison of a Modified Large-Particle Method with Some High Resolution Schemes. One-Dimensional Test Problems,” Vychisl. Metody Programm. 20, 138-146 (2019).
- D. V. Sadin, S. D. Lyubarskii, and Yu. A. Gravchenko, “Features of an Underexpanded Pulsed Impact Gas-Dispersed Jet with a High Particle Concentration,” Zh. Tekh. Fiz. 87 (1), 22-26 (2017) [Tech. Fiz. 62 (1), 18-23 (2017)].
- V. M. Goloviznin, S. A. Karabasov, and V. G. Kondakov, “Generalization of the CABARET Scheme to Two-Dimensional Orthogonal Computational Grids,” Mat. Model. 25 (7), 103-136 (2013) [Math. Models Comput. Simul. 6 (1), 56-79 (2014)].
- R. Landshoff, A Numerical Method for Treating Fluid Flow in the Presence of Shocks , Technical Report LA-1930 (Los Alamos Nat. Lab., Los Alamos, 1955).
- R. B. Christensen, Godunov Methods on a Staggered Mesh - An Improved Artificial Viscosity , Preprint UCRL-JC-105269 (Lawrence Livermore Nat. Lab., Livermore, 1990).
- A. F. Emery, “An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Problems,” J. Comput. Phys. 2 (3), 306-331 (1968).
- X. Liu, S. Zhang, H. Zhang, and C.-W. Shu, “A New Class of Central Compact Schemes with Spectral-Like Resolution II: Hybrid Weighted Nonlinear Schemes,” J. Comput. Phys. 284, 133-154 (2015).
- P. V. Bulat and K. N. Volkov, “Simulation of Supersonic Flow in a Channel with a Step on Nonstructured Meshes with the Use of the Weno Scheme,” Inzh. Fiz. Zh. 88 (4), 848-855 (2015) [J. Eng. Phys. Thermophys. 88 (6), 1582-1582 (2015)]
- S. A. Isaev and D. A. Lysenko, “Testing of Numerical Methods, Convective Schemes, Algorithms for Approximation of Flows, and Grid Structures by the Example of a Supersonic Flow in a Step-Shaped Channel with the Use of the CFX and Fluent Packages,” Inzh. Fiz. Zh. 82 (2), 326-330 (2009) [J. Eng. Phys. Thermophys. 82 (2), 321-326 (2009)].
- M. P. Galanin and E. B. Savenkov, Numerical Analysis Methods for Mathematical Models (Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Moscow, 2010) [in Russian].
- I. V. Popov and I. V. Fryazinov, “Calculations of Two-Dimensional Test Problems by the Method of Adaptive Viscosity,” Mat. Model. 22 (5), 57-66 (2010) [Math. Models Comput. Simul. 2 (6), 724-732 (2010)].
- M. P. Galanin, E. B. Savenkov, and S. A. Tokareva, “Solving Gas Dynamics Problems with Shock Waves using the Runge-Kutta Discontinuous Galerkin Method,” Mat. Model. 20 (11), 55-66 (2008). [Math. Models Comput. Simul. 1 (5), 635-645 (2009)].
- A. N. Semenov, M. K. Berezkina, and I. V. Krasovskaya, “Classification of Shock Wave Reflections from a Wedge. Part 2: Experimental and Numerical Simulations of Different Types of Mach Reflections,” Zh. Tekh. Fiz. 79 (4), 52-58 (2009) [Tech. Phys. 54 (4), 497-503 (2009)].
- J. Shi, Y.-T. Zhang, and C.-W. Shu, “Resolution of High Order WENO Schemes for Complicated Flow Structures,” J. Comput. Phys. 186 (2), 690-696 (2003).
- N. M. Evstigneev, “On the Construction and Properties of WENO-Schemes Order Five, Seven, Nine, Eleven and Thirteen. Part 2. Numerical Examples,” Comput. Res. Model. 8 (6), 885-910 (2016).
- R. Liska and B. Wendroff, “Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations,” SIAM J. Sci. Comput. 25 (3), 995-1017 (2003).