Исследование неустойчивости автоколебаний в электрических схемах на основе варикапов: аналитический и численный подходы
Авторы
-
В.А. Васильченко
-
М.О. Корпусов
-
Д.В. Лукьяненко
-
А.А. Панин
Ключевые слова:
уравнение соболевского типа
численная диагностика разрушения решения
Аннотация
Проведено аналитическое и численное исследование разрушения решения одного нелинейного уравнения cоболевского типа, которое описывает процессы в электрических схемах на основе варикапов. Аналитическое исследование проводилось энергетическим методом. Для численного решения исходное уравнение в частных производных аппроксимировалось с помощью метода прямых системой обыкновенных дифференциальных уравнений, которая затем решалась с помощью одностадийной схемы Розенброка с комплексным коэффициентом. В основе численной диагностики разрушения решения исследуемого уравнения лежало вычисление апостериорной асимптотически точной оценки погрешности приближенного решения на последовательно сгущающихся сетках.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- E. Mitidieri and S. I. Pokhozhaev, “A Priori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 234, 3-383 (2001) [Proc. Steklov Inst. Math. 234, 1-362 (2001)].
- A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations (Nauka, Moscow, 1987; Gruyter, Berlin, 1995).
- V. A. Galaktionov and S. I. Pokhozhaev, “Third-Order Nonlinear Dispersive Equations: Shocks, Rarefaction, and Blowup Waves,” Zh. Vychisl. Mat. Mat. Fiz. 48 (10), 1819-1846 (2008) [Comput. Math. Math. Phys. 48 (10), 1784-1810 (2008)].
- H. A. Levine, “Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equations of the Form Put = -Au + F(u),” Arch. Rational Mech. Anal. 51 (5), 371-386 (1973).
- H. A. Levine, “Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations of the Form Putt = -Au + F(u),” Trans. Am. Math. Soc. 192, 1-21 (1974).
- V. K. Kalantarov and O. A. Ladyzhenskaya, “The Occurrence of Collapse for Quasilinear Equations of Parabolic and Hyperbolic Types,” Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 69, 77-102 (1977). [J. Math. Sci. 10 (1), 53-70 (1978)].
- A. G. Sveshnikov, A. B. Al’shin, M. O. Korpusov, and Yu. D. Pletner, Linear and Nonlinear Equations of Sobolev Type (Fizmatlit, Moscow, 2007) [in Russian].
- M. O. Korpusov, Blow-up in Nonclassical Wave Equations (LIBROCOM, Moscow, 2010) [in Russian].
- M. O. Korpusov, “Blow-up of Ion Acoustic Waves in a Plasma,” Mat. Sb. 202 (1), 37-64 (2011) [Sb. Math. 202 (1), 35-60 (2011)].
- M. O. Korpusov, A. G. Sveshnikov, and E. V. Yushkov, Methods of the Theory of Solution Blow-Up for Nonlinear Equations of Mathematical Physics (Moscow State Univ., Faculty of Physics, Moscow, 2014) [in Russian].
- D. V. Luk’yanenko and A. A. Panin, “Blow-up Phenomena in the Model of a Space Charge Stratification in Semiconductors: Numerical Analysis of Original Equation Reduction to a Differential-Algebraic System,” Vychisl. Metody Programm. 17, 437-446 (2016).
- M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov, “Blow-up for One Sobolev Problem: Theoretical Approach and Numerical Analysis,” J. Math. Anal. Appl. 442 (2), 451-468 (2016).
- M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov, “Blow-up Phenomena in the Model of a Space Charge Stratification in Semiconductors: Analytical and Numerical Analysis,” Math. Meth. Appl. Sci. 40 (7), 2336-2346 (2017).
- M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, and A. A. Panin, “Local Solvability and Decay of the Solution of an Equation with Quadratic Noncoercive Nonlinearity,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 10 (2), 107-123 (2017).
- M. O. Korpusov and D. V. Lukyanenko, “Instantaneous Blow-up Versus Local Solvability for One Problem of Propagation of Nonlinear Waves in Semiconductors,” J. Math. Anal. Appl. 459 (1), 159-181 (2018).
- M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and G. I. Shlyapugin, “On the Blow-up Phenomena for a One-Dimensional Equation of Ion-Sound Waves in a Plasma: Analytical and Numerical Investigation,” Math. Methods Appl. Sci. 41 (8), 2906-2929 (2018).
- M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov, “Blow-up of Solutions of a Full Non-Linear Equation of Ion-Sound Waves in a Plasma with Non-Coercive Non-Linearities,” Izv. Ross. Akad. Nauk, Ser. Mat. 82 (2), 43-78 (2018) [Izv. Math. 82 (2), 283-317 (2018)].
- M. O. Korpusov, D. V. Lukyanenko, and A. D. Nekrasov, “Analytic-Numerical Investigation of Combustion in a Nonlinear Medium,” Zh. Vychisl. Mat. Mat. Fiz. 58 (9), 1553-1563 (2018) [Comput. Math. Math. Phys. 58 (9), 1499-1509 (2018)].
- E. A. Alshina, N. N. Kalitkin, and P. V. Koryakin, “Diagnostics of Singularities of Exact Solutions in Computations with Error Control,” Zh. Vychisl. Mat. Mat. Fiz. 45 (10), 1837-1847 (2005) [Comput. Math. Math. Phys. 45 (10), 1769-1779 (2005)].
- N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, and B. V. Rogov, Calculations on Quasi-Uniform Grids (Fizmatlit, Moscow, 2005) [in Russian].
- A. B. Al’shin and E. A. Al’shina, “Numerical Diagnosis of Blow-up of Solutions of Pseudoparabolic Equations,” J. Math. Sci. 148 (1), 143-162 (2008).
- M. I. Rabinovich, “Self-Oscillations of Distributed Systems,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 17 (4), 477-510 (1974). [Radiophys. Quantum Electron. 17 (4), 361-385 (1974)].
- M. O. Korpusov and E. A. Ovsyannikov, “Blow-up Instability in Nonlinear Wave Models with Distributed Parameters,” Izv. Ross. Akad. Nauk, Ser. Mat. (in press).
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations. Stiff and Differential-Algebraic Problems (Springer, Berlin, 2002).
- N. N. Kalitkin, “Numerical Methods for Solving Stiff Systems,” Mat. Model. 7 (5), 8-11 (1995).
- H. H. Rosenbrock, “Some General Implicit Processes for the Numerical Solution of Differential Equations,” Comput. J. 5 (4), 329-330 (1963).
- A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, and A. B. Koryagina, “Rosenbrock Schemes with Complex Coefficients for Stiff and Differential Algebraic Systems,” Zh. Vychisl. Mat. Mat. Fiz. 46 (8), 1392-1414 (2006) [Comput. Math. Math. Phys. 46 (8), 1320-1340 (2006)].