Метод декартовых сеток для трехмерного численного моделирования распространения ударных волн в областях сложной формы с подвижными границами
Авторы
-
В.В. Елесин
-
Д.А. Сидоренко
-
П.С. Уткин
Ключевые слова:
математическое моделирование
трехмерные уравнения Эйлера
метод декартовых сеток
ударная волна
Аннотация
Статья посвящена разработке и количественной оценке свойств вычислительного алгоритма метода декартовых сеток для трехмерного математического моделирования распространения ударных волн в областях сложной изменяющейся формы. Представлено подробное описание вычислительного алгоритма, ключевым элементом которого является определение численного потока через грани, по которым внутренние, регулярные ячейки расчетной области соседствуют с внешними, пересекаемыми границами тел ячейками. Работоспособность алгоритма продемонстрирована в результате сравнения рассчитанных и экспериментальных данных в задачах о взаимодействии ударной волны с неподвижной сферой и подвижной частицей.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- S. V. Dyachenko, “Development of a Software Package for 3D Modeling of Multiphase Multicomponent Flows in Nuclear Power Engineering,” Vychisl. Metody Programm. 15, 162-182 (2014).
- A. V. Glazunov, “Numerical Simulation of Turbulence and Transport of Fine Particulate Impurities in Street Canyons,” Vychisl. Metody Programm. 19, 17-37 (2018).
- K. N. Volkov, V. N. Emelyanov, and I. V. Teterina, “Visualization of Numerical Results Obtained for Gas-Particle Flows Using Lagrangian Approaches to the Dispersed Phase Description,” Vychisl. Metody Programm. 19, 522-539 (2018).
- A. A. Fedorov, “Droplet Visualization in FlowVision,” Vychisl. Metody Programm. 19, 1-8 (2018).
- I. A. Bedarev and A. V. Fedorov, “Direct Simulation of the Relaxation of Several Particles Behind Transmitted Shock Waves,” Inzh. Fiz. Zh. 90 (2), 450-457 (2017) [J. Eng. Phys. Thermophys. 90 (2), 423-429 (2017)].
- O. Sen, N. J. Gaul, K. K. Choi, et al., “Evaluation of Kriging Based Surrogate Models Constructed from Mesoscale Computations of Shock Interaction with Particles,” J. Comput. Phys. 336, 235-260 (2017).
- S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian].
- R. Mittal and G. Iaccarino, “Immersed Boundary Methods,” Annu. Rev. Fluid Mech. 37, 239-261 (2005).
- W. P. Bennett, N. Nikiforakis, and R. Klein, “A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids Using Directional Operator Splitting,” J. Comput. Phys. 368, 333-358 (2018).
- R. B. Pember, J. B. Bell, P. Colella, et al., “An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions,” J. Comput. Phys. 120 (2), 278-304 (1995).
- P. Colella, D. T. Graves, B. J. Keen, and D. Modiano, “A Cartesian Grid Embedded Boundary Method for Hyperbolic Conservation Laws,” J. Comput. Phys. 211 (1), 347-366 (2006).
- X. Y. Hu, B. C. Khoo, N. A. Adams, and F. L. Huang, “A Conservative Interface Method for Compressible Flows,” J. Comput. Phys. 219 (2), 553-578 (2006).
- L. Schneiders, D. Hartmann, M. Meinke, and W. Schröder, “An Accurate Moving Boundary Formulation in Cut-Cell Methods,” J. Comput. Phys. 235, 786-809 (2013).
- P. Colella, “Multidimensional Upwind Methods for Hyperbolic Conservation Laws,” J. Comput. Phys. 87 (1), 171-200 (1990).
- R. Klein, K. R. Bates, and N. Nikiforakis, “Well-Balanced Compressible Cut-Cell Simulation of Atmospheric Flow,” Phil. Trans. Roy. Soc. Ser. A. Math. Phys. Eng. Sci. 367, 4559-4575 (2009).
- L. Schneiders, C. Günther, M. Meinke, and W. Schröder, “An Efficient Conservative Cut-Cell Method for Rigid Bodies Interacting with Viscous Compressible Flows,” J. Comput. Phys. 311, 62-86 (2016).
- D. K. Clarke, H. A. Hassan, and M. D. Salas, “Euler Calculations for Multielement Airfoils Using Cartesian Grids,” AIAA J. 24 (3), 353-358 (1986).
- J. J. Quirk, “An Alternative to Unstructured Grids for Computing Gas Dynamic Flows around Arbitrarily Complex Two-Dimensional Bodies,” Comput. Fluids 23 (1), 125-142 (1994).
- M. J. Berger, C. Helzel, and R. J. LeVeque, “H-box Methods for the Approximation of Hyperbolic Conservation Laws on Irregular Grids,” SIAM J. Numer. Anal. 41 (3), 893-918 (2003).
- D. M. Ingram, D. M. Causon, and C. G. Mingham, “Developments in Cartesian Cut Cell Methods,” Math. Comput. Simul. 61 (3-6), 561-572 (2003).
- S. Xu, T. Aslam, and D. S. Stewart, “High Resolution Numerical Simulation of Ideal and Non-ideal Compressible Reacting Flows with Embedded Internal Boundaries,” Combust. Theory Model. 1 (1), 113-142 (1997).
- G. Yang, D. M. Causon, D. M. Ingram, et al., “A Cartesian Cut Cell Method for Compressible Flows. Part A: Static Body Problems,” Aeronaut. J. 101 (1002), 47-56 (1997).
- P. T. Barton, B. Obadia, and D. Drikakis, “A Conservative Level-Set Based Method for Compressible Solid/Fluid Problems on Fixed Grids,” J. Comput. Phys. 230 (21), 7867-7890 (2011).
- D. Hartmann, M. Meinke, and W. Schröder, “A Strictly Conservative Cartesian Cut-Cell Method for Compressible Viscous Flows on Adaptive Grids,” Comput. Methods Appl. Mech. Eng. 200 (9-12), 1038-1052 (2011).
- A. Pogorelov, M. Meinke, and W. Schröder, “Cut-Cell Method Based Large-Eddy Simulation of Tip-Leakage Flow,” Phys. Fluids 27 (2015).
doi 10.1063/1.4926515
- A. Pogorelov, M. Meinke, and W. Schröder, “Effects of Tip-Gap Width on the Flow Field in an Axial Fan,” Int. J. Heat Fluid Fl. 61, 466-481 (2016).
- A. Pogorelov, L. Schneiders, M. Meinke, and W. Schröder, “An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces,” Flow Turbul. Combust. 100 (1), 19-38 (2018).
- C. Helzel, M. J. Berger, and R. J. LeVeque, “A High-Resolution Rotated Grid Method for Conservation Laws with Embedded Geometries,” SIAM J. Sci. Comput. 26 (3), 785-809 (2005).
- M. Berger and C. Helzel, “A Simplified h-box Method for Embedded Boundary Grids,” SIAM J. Sci. Comput. 34 (2), A861-A888 (2012).
- D. A. Sidorenko and P. S. Utkin, “A Cartesian Grid Method for the Numerical Modeling of Shock Wave Propagation in Domains of Complex Shape,” Vychisl. Metody Programm. 17, 353-364 (2016).
- D. A. Sidorenko and P. S. Utkin, “Two-Dimensional Gas-Dynamic Modeling of the Interaction of a Shock Wave with Beds of Granular Media,” Khim. Fiz. 37 (9), 43-49 (2018) [Russ. J. Phys. Chem. B. 12 (5), 869-874 (2018)].
- D. A. Sidorenko and P. S. Utkin, “Numerical Modeling of the Relaxation of a Body behind the Transmitted Shock Wave,” Mat. Model. 30 (11), 91-104 (2018). [Math. Models Comput. Simul. 11 (4), 509-517 (2019)].
- A. Chertock and A. Kurganov, “A Simple Eulerian Finite-Volume Method for Compressible Fluids in Domains with Moving Boundaries,” Commun. Math. Sci. 6 (3), 531-556 (2008).
- J. L. Steger and R. F. Warming, “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods,” J. Comput. Phys. 40 (2), 263-293 (1981).
- M. Pandolfi and D. D’Ambrosio, “Numerical Instabilities in Upwind Methods: Analysis and Cures for the ’Carbuncle’ Phenomenon,” J. Comput. Phys. 166 (2), 271-301 (2001).
- H. Tanno, K. Itoh, T. Saito, et al., “Interaction of a Shock with a Sphere Suspended in a Vertical Shock Tube,” Shock Waves 13 (3), 191-200 (2003).
- V. M. Boiko, A. V. Fedorov, V. M. Fomin, et al., “Ignition of Small Particles Behind Shock Waves,” in Shock Waves, Explosions and Detonations (American Inst. of Aeronautics and Astronautics, New York, 1983), pp. 71-87.