Обратные задачи интерпретации экспериментальных данных 3D ультразвуковых томографических исследований
Авторы
-
А.В. Гончарский
-
В.А. Кубышкин
-
С.Ю. Романов
-
С.Ю. Серёжников
Ключевые слова:
ультразвуковая томография
обратные задачи
медицинская диагностика
GPU кластер
Аннотация
Обратная задача 3D ультразвуковой томографии рассматривается в статье как нелинейная коэффициентная обратная задача для уравнения гиперболического типа. Используемая математическая модель хорошо описывает как дифракционные эффекты, так и поглощение ультразвука в неоднородной среде. В рассматриваемой постановке реконструируется скорость распространения акустической волны как функция трех координат. Количество неизвестных в нелинейной обратной задаче составляет порядка 50 миллионов. Разработанные итерационные алгоритмы решения обратной задачи ориентированы на использование GPU-кластеров. Основным результатом работы является апробация алгоритмов на экспериментальных данных. В эксперименте использовался стенд для 3D ультразвуковых томографических исследований, разработанный в МГУ имени М.В. Ломоносова. Акустические параметры фантомов близки к акустическим параметрам мягких тканей человека. Объем экспериментальных данных составляет порядка 3 ГБ. Интерпретация данных эксперимента позволила не только продемонстрировать эффективность разработанных алгоритмов, но и подтвердила адекватность математической модели реальности. Для реализации разработанных численных алгоритмов использовался графический кластер суперкомпьютера "Ломоносов-2".
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
- M. Sak, N. Duric, P. Littrup, et al., “Using Speed of Sound Imaging to Characterize Breast Density,” Ultrasound Med. Biol. 43 (1), 91-103 (2017).
- A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, “Inverse Problems of Layer-by-Layer Ultrasonic Tomography with the Data Measured on a Cylindrical Surface,” Vychisl. Metody Programm. 18, 267-276 (2017).
- A. V. Goncharsky, S. Yu. Romanov and S. Yu. Seryozhnikov, “Low-Frequency Three-Dimensional Ultrasonic Tomography,” Dokl. Akad. Nauk 468 (3), 268-271 (2016) [Dokl. Phys. 61 (5), 211-214 (2016)].
- R. Jiří k, I. Peterlí k, N. Ruiter, et al., “Sound-Speed Image Reconstruction in Sparse-Aperture 3-D Ultrasound Transmission Tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (2), 254-264 (2012).
- J. Wiskin, D. T. Borup, S. A. Johnson, and M. Berggren, “Non-Linear Inverse Scattering: High Resolution Quantitative Breast Tissue Tomography,” J. Acoust. Soc. Am. 131 (5), 3802-3813 (2012).
- V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, “Reconstruction of the Sound Velocity and Absorption Spatial Distributions in Soft Biological Tissue Phantoms from Experimental Ultrasound Tomography Data,” Akust. Zh. 61 (2), 254-273 (2015) [Acoust. Phys. 61 (2), 231-248 (2015)].
- F. Natterer, “Incomplete Data Problems in Wave Equation Imaging,” Inverse Probl. Imag. 4 (4), 685-691 (2010).
- L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012).
- A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “A Computer Simulation Study of Soft Tissue Characterization Using Low-Frequency Ultrasonic Tomography,” Ultrasonics 67, 136-150 (2016).
- A. V. Goncharsky and S. Y. Romanov, “A Method of Solving the Coefficient Inverse Problems of Wave Tomography,” Comput. Math. Appl. 77 (4), 967-980 (2019).
- S. Y. Romanov, “Supercomputer Simulation Study of the Convergence of Iterative Methods for Solving Inverse Problems of {3D} Acoustic Tomography with the Data on a Cylindrical Surface,” in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 965, pp. 388-400.
- A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Low-Frequency Ultrasonic Tomography: Mathematical Methods and Experimental Results,” Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 1, 40-47 (2019) [Moscow Univ. Phys. Bull. 74 (1), 43-51 (2019)].
- V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, “’Lomonosov’: Supercomputing at Moscow State University,” in Contemporary High Performance Computing: From Petascale toward Exascale (CRC Press, Boca Raton, 2013), pp. 283-308.
- A. V. Goncharsky and S. Y. Romanov, “Inverse Problems of Ultrasound Tomography in Models with Attenuation,” Phys. Med. Biol. 59 (8), 1979-2004 (2014).
- A. V. Goncharsky and S. Y. Romanov, “Iterative Methods for Solving Coefficient Inverse Problems of Wave Tomography in Models with Attenuation,” Inverse Probl. 33 (2) (2017).
doi 10.1088/1361-6420/33/2/025003
- A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Kluwer, Dordrecht, 1994).
- A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Springer, Dordrecht, 1995; Nauka, Moscow, 1990).
- A. V. Goncharsky and S. Y. Romanov, “Supercomputer Technologies in Inverse Problems of Ultrasound Tomography,” Inverse Probl. 29 (7) (2013).
doi 10.1088/0266-5611/29/7/075004
- B. Engquist and A. Majda, “Absorbing Boundary Conditions for the Numerical Simulation of Waves,” Math. Comp. 31, 629-651 (1977).
- A. Goncharsky and S. Seryozhnikov, “The Architecture of Specialized GPU Clusters Used for Solving the Inverse Problems of 3D Low-Frequency Ultrasonic Tomography,” in Communications in Computer and Information Science (Springer, Cham, 2017), Vol. 793, pp. 363-375.
- S.-Y. Mu and H.-W. Chang, “Dispersion and Local-Error Analysis of Compact LFE-27 Formula for Obtaining Sixth-order Accurate Numerical Solutions of 3D Helmholtz Equation,” Prog. Electromagn. Res. 143, 285-314 (2013).
- S. Romanov, “Optimization of Numerical Algorithms for Solving Inverse Problems of Ultrasonic Tomography on a Supercomputer,” in Communications in Computer and Information Science (Springer, Cham, 2017), Vol. 793, pp. 67-79.
- A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, “Low-Frequency 3D Ultrasound Tomography: Dual-Frequency Method,” Vychisl. Metody Programm. 19, 479-495 (2018).
- A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Inverse Problems of 3D Ultrasonic Tomography with Complete and Incomplete Range Data,” Wave Motion 51 (3), 389-404 (2014).
- M. Fink, “Time Reversal in Acoustics,” Contemp. Phys. 37 (2), 95-109 (1996).
- A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, “The Problem of Choosing Initial Approximations in Inverse Problems of Ultrasound Tomography,” Vychisl. Metody Programm. 18, 312-321 (2017).
- A. Goncharsky and S. Seryozhnikov, “Supercomputer Technology for Ultrasound Tomographic Image Reconstruction: Mathematical Methods and Experimental Results,” in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 965, pp. 401-413.