Искусственные граничные условия при ILES-моделировании течения в плоском канале по схеме Кабаре
Ключевые слова:
плоский канал
ILES
схема Кабаре
искусственные граничные условия
Аннотация
Представлены результаты ILES-моделирования классической задачи течения вязкой несжимаемой жидкости в плоском канале по схеме Кабаре. Рассматривается возможность модификации расчета течения возле стенки для более точного определения средних характеристик. Предложено введение "искусственных" граничных условий путем использования в первом слое ячеек вблизи стенки специальной модели вихревой вязкости для корректного учета сдвиговых эффектов. Приводится сравнение результатов расчета течения в плоском канале по схеме Кабаре с предложенными искусственными граничными условиями и без в широком диапазоне чисел Рейнольдса. Показано, что введенные модификации в пристеночном слое позволяют повысить точность определения средних характеристик течения, в особенности вторых моментов. Полученные данные также сравниваются с результатами LES-моделирования с использованием псевдоспектрального метода и с данными прямого численного моделирования.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- K. N. Volkov and V. N. Emel’yanov, Large Eddy Simulation in Calculations of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].
- U. Schumann, “Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli,” J. Comput. Phys. 18 (4), 376-404 (1975).
- E. Léveque, F. Toschi, L. Shao, and J.-P. Bertoglio, “Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows,” J. Fluid Mech. 570, 491-502 (2007).
- V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
- V. Yu. Glotov, A Mathematical Model of Free Turbulence Based on Maximum Principle. Candidate’s Dissertation in Mathematics and Physics (Keldysh Institute of Applied Mathematics, Moscow, 2015).
- D. G. Asfandiyarov, B. I. Berezin, and S. A. Finogenov, “Direct Numerical Simulation of a Turbulent Flow of Viscous Incompressible Fluid in a 2D Channel Using Scheme CABARE,” Voprosy Atomn. Nauki Tekhn., No. 4, 57-62 (2013).
- D. G. Asfandiyarov, V. M. Goloviznin, and S. A. Finogenov, “Parameter-Free Method for Computing the Turbulent Flow in a Plane Channel in a Wide Range of Reynolds Numbers,” Zh. Vychisl. Mat. Mat. Fiz. 55 (9), 1545-1558 (2015) [Comput. Math. Math. Phys. 55 (9), 1515-1526 (2015)].
- D. G. Asfandiyarov, S. A. Finogenov, and V. M. Goloviznin, “Direct Numerical Simulation of Near-Wall Turbulence in a Plane Channel in a Wide Range of Reynolds Numbers,” Voprosy Atomn. Nauki Tekhn., No. 2, 48-58 (2016).
- V. M. Goloviznin, I. A. Korotkin, and S. A. Finogenov, “Parameter-Free Numerical Method for Modeling Thermal Convection in Square Cavities in a Wide Range of Rayleigh Numbers,” Vychisl. Mekhan. Sploshn. Sred 8 (1), 60-70 (2015).
- V. M. Goloviznin, I. A. Korotkin, and S. A. Finogenov, “Turbulent Natural Convection Modeling in Enclosed Tall Cavities,” Vychisl. Mekhan. Sploshn. Sred 9 (3), 253-263 (2016).
- P. Sagaut, Large Eddy Simulation for Incompressible Flows. An Introduction (Springer, Berlin, 2006).
- R. D. Moser, J. Kim, and N. N. Mansour, “Direct Numerical Simulation of Turbulent Channel Flow up to Re_τ=590,” Phys. Fluids. 11 (4), 943-945 (1999).
- J. Graham, K. Kanov, X. I. A. Yang, et al., “A Web Services Accessible Database of Turbulent Channel Flow and Its Use for Testing a New Integral Wall Model for LES,” J. Turbul. 17 (2), 181-215 (2016).