Лагранжевые когерентные вихревые структуры и их численная визуализация
Авторы
-
К.Н. Волков
-
В.Н. Емельянов
-
И.Е. Капранов
-
И.В. Тетерина
Ключевые слова:
вычислительная газовая динамика
научная визуализация
вихрь
лагранжевая турбулентность
хаотическая адвекция
сечение Пуанкаре
показатель Ляпунова
Аннотация
Рассматриваются вопросы, связанные с реализацией и физико-математическим сопровождением вычислительных экспериментов по исследованию течений жидкости и газа, содержащих лагранжевые когерентные вихревые структуры. Обсуждаются методы и инструменты, предназначенные для визуализации вихревых течений, возникающих в различных практических приложениях. Приводятся примеры визуального представления решений ряда задач вихревой газовой динамики, полученных при помощи лагранжевых подходов к описанию течений жидкости и газа. Помимо традиционных подходов к визуализации вихревых течений, основанных на построении линий уровня различных характеристик потока, применяются фазовые траектории лагранжевых частиц, сечения Пуанкаре и метод локальных показателей Ляпунова.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- A. E. Bondarev and V. A. Galaktionov, “Current Visualization Trends in CFD Problems,” Appl. Math. Sci. 8 (28), 1357-1368 (2014).
- K. N. Volkov, V. N. Emel’yanov, I. V. Teterina, and M. S. Yakovchuk, “Visualization of Vortical Flows in Computational Fluid Dynamics,” Zh. Vychisl. Mat. Mat. Fiz. 57 (8), 1374-1391 (2017) [Comput. Math. Math. Phys. 57 (8), 1360-1375 (2017)].
- M. A. Green, C. W. Rowley, and G. Haller, “Detection of Lagrangian Coherent Structures in Three-Dimensional Turbulence,” J. Fluid Mech. 572, 111-120 (2007).
- G. Haller, “Lagrangian Coherent Structures,” Annu. Rev. Fluid Mech. 47, 137-162 (2015).
- Y. Huang and M. A. Green, “Detection and Tracking of Vortex Phenomena Using Lagrangian Coherent Structures,” Exp. Fluids 56 (7), 1-12 (2015).
- H. J854nicke and G. Scheuermann, “Measuring Complexity in Lagrangian and Eulerian Flow Descriptions,” Comput. Graph. Forum 29 (6), 1783-1794 (2010).
- M. R. Allshouse and T. Peacock, “Lagrangian Based Methods for Coherent Structure Detection,” Chaos 25 (2015).
doi 10.1063/1.4922968
- A. Hadjighasem, D. Karrasch, H. Teramoto, and G. Haller, “Spectral-Clustering Approach to Lagrangian Vortex Detection,” Phys. Rev. E 93 (2016).
doi 10.1103/PhysRevE.93.063107
- K. L. Schlueter-Kuck and J. O. Dabiri, “Coherent Structure Colouring: Identification of Coherent Structures from Sparse Data Using Graph Theory,” J. Fluid Mech. 811, 468-486 (2017).
- K. V. Koshel and S. V. Prants, “Chaotic Advection in the Ocean,” Usp. Fiz. Nauk 176 (11), 1177-1206 (2006) [Phys. Usp. 49 (11), 1151-1178 (2006)].
- X. Yuan and B. Chen, “Illustrating Surfaces in Volume,” in Proc. 6th Joint IEEE/EG Symp. on Visualization, Konstanz, Germany, May 19-21, 2004 (Eurographics Association, Aire-la-Ville, 2004), pp. 9-16.
- K. Bürger, P. Kondratieva, J. Krüger, and R. Westermann, “Importance-Driven Particle Techniques for Flow Visualization,” in Proceedings IEEE Pacific Visualization Symposium, Kyto, Japan, March 4-7, 2008 (IEEE Press, New York, 2008), pp. 71-78.
- K. Liang, P. Monger, and H. Couchman, “Interactive Parallel Visualization of Large Particle Datasets,” Parallel Comput. 31 (2), 243-260 (2005).
- C. Jones and K.-L. Ma, “Visualizing Flow Trajectories Using Locality-based Rendering and Warped Curve Plots,” IEEE Trans. Vis. Comput. Graph. 16 (6), 1587-1594 (2010).
- F. Sadlo, S. Bachthaler, C. Dachsbacher, and D. Weiskopf, “Space-Time Flow Visualization of Dynamics in 2D Lagrangian Coherent Structures,” in Computer Vision, Imaging and Computer Graphics. Theory and Application (Springer, Berlin, 2013), pp. 145-159.
- O. G. Bakunin, “Stochastic Instability and Turbulent Transport. Characteristic Scales, Increments, and Diffusion Coefficients,” Usp. Fiz. Nauk 185 (3), 271-306 (2015) [Phys. Usp. 58 (3), 252-285 (2015)].
- A. Pobitzer, R. Peikert, R. Fuchs, et al., “On the Way Towards Topology-Based Visualization of Unsteady Flow - the State of the Art,” in EuroGraphics 2010 State of the Art Reports, Norrköping, Sweden, May 3-7, 2010 (Blackwell Publishing, Hoboken, 2010), pp. 137-154.
- S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and Properties of Lagrangian Coherent Structures from Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic Flows,” Physica D 212 (3-4), 271-304 (2005).
- T. Lindeberg, “Feature Detection with Automatic Scale Selection,” Int. J. Comput. Vis. 30 (2), 79-116 (1998).
- B. Schindler, R. Peikert, R. Fuchs, and H. Theisel, “Ridge Concepts for the Visualization of Lagrangian Coherent Structures,” in Topological Methods in Data Analysis and Visualization II (Springer, Berlin, 2012), pp. 221-235.
- E. Aurell, G. Boffetta, A. Crisanti, et al., “Predictability in the Large: An Extension of the Concept of Lyapunov Exponent,” J. Phys. A: Math. Gen. 30 (1), 1-26 (1997).
- D. Karrasch and G. Haller, “Do Finite-Size Lyapunov Exponents Detect Coherent Structures?,” Chaos 23 (2013).
doi 10.1063/1.4837075
- G. Boffetta, G. Lacorata, G. Redaelli, and A. Vulpiani, “Detecting Barriers to Transport: A Review of Different Techniques,” Physica D 159 (1-2), 58-70 (2001).
- F. Sadlo and R. Peikert, “Efficient Visualization of Lagrangian Coherent Structures by Filtered AMR Ridge Extraction,” IEEE Trans. Vis. Comput. Graph. 13 (6), 1456-1463 (2007).
- R. Peikert, A. Pobitzer, F. Sadlo, and B. Schindler, “A Comparison of Finite-Time and Finite-Size Lyapunov Exponents,” in Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization (Springer, Berlin, 2014), pp. 187-200.
- M. Cencini and A. Vulpiani, “Finite Size Lyapunov Exponent: Review on Applications,” J. Phys. A. Math. Theor. 46 (2013).
doi 10.1088/1751-8113/46/25/254019
- M. V. Budyansky and S. V. Prants, “A Mechanism of Chaotic Mixing in an Elementary Deterministic Flow,” Pis’ma Zh. Tekh. Fiz. 27 (12), 51-56 (2001) [Tech. Phys. Lett., 27 (6), 508-510 (2001)].
- A. Kuhn, Ch. Rössl, T. Weinkauf, and H. Theisel, “A Benchmark for Evaluating FTLE Computations,” in Proc. Pacific Visualization Symposium (PacificVis), Songdo, Korea, February 22-March 2, 2012 (IEEE Computer Society, Piscataway, 2012).
doi 10.1109/PacificVis.2012.6183582
- J. M. Nese, “Quantifying Local Predictability in Phase Space,” Physica D 35 (1-2), 237-250 (1989).
- J. Kasten, C. Petz, I. Hotz, et al., “Localized Finite-time Lyapunov Exponent for Unsteady Flow Analysis,” in Vision Modeling and Visualization (Univ. of Magdeburg, Magdeburg, 2009), Vol. 1, pp. 265-274.
- F. Lekien and S. D. Ross, “The Computation of Finite-Time Lyapunov Exponents on Unstructured Meshes and for Non-Euclidean Manifolds,” Chaos 20 (2010).
doi 10.1063/1.3278516
- M. Van Dyke, An Album of Fluid Motion (Parabolic Press, Stanford, 1982; Mir, Moscow, 1986).