Моделирование волновых процессов в трещиновато-пористых средах: влияние связности трещин на поглощение сейсмической энергии

Авторы

  • М.А. Новиков Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
  • Я.В. Базайкин Институт математики имени С.Л. Соболева СО РАН (ИМ СО РАН) https://orcid.org/0000-0003-3043-4224
  • В.В. Лисица Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН https://orcid.org/0000-0003-3544-4878
  • А.А. Козяев Институт нефти и газа Сибирского федерального университета

DOI:

https://doi.org/10.26089/NumMet.v19r323

Ключевые слова:

уравнения Био, конечно-разностные схемы, сейсмические волны, трещиновато-пористые среды, поглощение сейсмической энергии, статистическое моделирование, метод имитации отжига, дискретные системы трещин

Аннотация

Затухание сейсмических волн может служить критерием наличия развитой трещиноватости в пласте и его флюидонасыщения. Однако актуальной задачей является определение связности систем трещин, ведь именно протяженные кластеры трещин, образующие непрерывные пути миграции флюида, и представляют интерес в промысловой геофизике. Для анализа влияния связности систем трещин на сейсмические волновые поля в настоящей статье разработан и реализован алгоритм статистического моделирования для построении моделей трещиноватых сред с заданной степенью связности. Алгоритм основан на методе дискретных систем трещин, связность которых обеспечивается минимизацией функционала перколяции в методе имитации отжига. На основе численных экспериментов по моделированию сейсмических полей в трещиновато-пористых средах показано, что связность трещин и формирование ими вытянутых структур влияет на интенсивность перетоков флюида из трещин во вмещающую породу и, как следствие, интенсивность затухания сейсмических волн зависит от степени связности. Однако перетоки флюидов между трещинами имеют локальный характер и проявляются в фиксированном диапазоне частот, зависящем от индивидуальных размеров трещин. Этот эффект в еще большей степени выражен для сред с низкопроницаемой вмещающей породой – карбонатных пород. В этом случае перетоки флюидов из трещин во вмещающую среду отсутствуют и, как следствие, поглощение сейсмической энергии пренебрежимо мало и не зависит от связности системы трещин.

Авторы

М.А. Новиков

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
проспект Академика Коптюга, 3, 630090, Новосибирск
• младший научный сотрудник

Я.В. Базайкин

Институт математики имени С.Л. Соболева СО РАН (ИМ СО РАН)
пр. ак. Коптюга, 4, 630090, Новосибирск
• заведующий лабораторией

В.В. Лисица

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
проспект Академика Коптюга, 3, 630090, Новосибирск
• заведующий лабораторией

А.А. Козяев

Институт нефти и газа Сибирского федерального университета
Свободный просп., д. 82, строение 6, 660041, Красноярск
• аспирант

Библиографические ссылки

  1. M. A. Belonosov, K. Kostov, G. V. Reshetova, et al., “Parallel Computations for the Simulation of Seismic Waves on the Basis of the Additive Schwartz Method,” Vychisl. Metody Programm. 13, 525-535 (2012).
  2. D. M. Vishnevsky, V. V. Lisitsa, and G. V. Reshetova, “Numerical Simulation of Seismic Wave Propagation in Media with Viscoelastic Intrusions,” Vychisl. Metody Programm. 14, 155-165 (2013).
  3. V. V. Dem’yanov and E. A. Savel’eva, Geostatistics: Theory and Practice (Nauka, Moscow, 2010) [in Russian].
  4. P. V. Korolenko, M. S. Maganova, and A. V. Mesniankin, New Methods for the Analysis of the Stochastic Processes and Structures in Optics. The Fractal and Multifractal Methods and Wavelet Transformations (Mosk. Gos. Univ., Moscow, 2004) [in Russian].
  5. V. I. Kostin, V. V. Lisitsa, G. V. Reshetova, and V. A. Tcheverda, “A Finite-Difference Method for the Numerical Simulation of Seismic Wave Propagation through Multiscale Media,” Vychisl. Metody Programm. 12, 321-329 (2011).
  6. L. M. Mestetskii, “The Continuous Skeleton of a Binary Raster Image,” in Proc. Int. Conf. Graphicon-98, Moscow, Russia, September 7-11, 1998 (Mosk. Gos. Univ., Moscow, 1998), pp. 71-78.
  7. M. A. Novikov, V. V. Lisitsa, and A. A. Kozyaev, “Numerical Modeling of Wave Processes in Fractured Porous Fluid-Saturated Media,” Vychisl. Metody Programm. 19, 130-149 (2018).
  8. G. V. Reshetova and T. S. Khachkova, “A Numerical Method to Estimate the Effective Elastic Moduli of Rocks from Two- and Three-Dimensional Digital Images of Rock Core Samples,” Vychisl. Metody Programm. 18, 416-433 (2017).
  9. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics , Vol. 2. Correlation Theory of Random Processes (Nauka, Moscow, 1978; Springer, Berlin, 1987).
  10. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1983; Marcel Dekker, New York, 2001).
  11. K. Amalokwu, A. I. Best, J. Sothcott, et al., “Water Saturation Effects on Elastic Wave Attenuation in Porous Rocks with Aligned Fractures,” Geophys. J. Int. 197 (2), 943-947 (2014).
  12. J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114 (2), 185-200 (1994).
  13. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Springer, Santa Clara, 2008).
  14. B. Berkowitz, “Analysis of Fracture Network Connectivity Using Percolation Theory,” Math. Geol. 27 (4), 467-483 (1995).
  15. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” J. Acoust. Soc. Am. 28 (2), 168-178 (1956).
  16. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Am. 28 (2), 179-191 (1956).
  17. J. M. Carcione, C. Morency, and J. E. Santos, “Computational Poroelasticity - A Review,” Geophysics 75 (5), 75A229-75A243 (2010).
  18. H. Deng, J. P. Fitts, and C. A. Peters, “Quantifying Fracture Geometry with X-Ray Tomography: Technique of Iterative Local Thresholding (TILT) for 3D Image Segmentation,” Comput. Geosci. 20 (1), 231-244 (2016).
  19. A. Grechishnikova, “Niobrara Discrete Fracture Networks: From Outcrop Surveys to Subsurface Reservoir Models,” SEG Technical Program Expanded Abstracts 2017. 3267-3271.
  20. J. Guo, J. G. Rubino, N. D. Barbosa, et al., “Seismic Dispersion and Attenuation in Saturated Porous Rocks with Aligned Fractures of Finite Thickness: Theory and Numerical Simulations - Part 1: P-wave Perpendicular to the Fracture Plane,” Geophysics 83 (1), WA49-WA62 (2018).
  21. J. Guo, J. G. Rubino, N. D. Barbosa, et al., “Seismic Dispersion and Attenuation in Saturated Porous Rocks with Aligned Fractures of Finite Thickness: Theory and Numerical Simulations - Part 2: Frequency-Dependent Anisotropy,” Geophysics 83 (1), WA63-WA71 (2018).
  22. J. Guo, J. G. Rubino, S. Glubokovskikh, and B. Gurevich, “Effects of Fracture Intersections on Seismic Dispersion: Theoretical Predictions Versus Numerical Simulations,” Geophys. Prospect. 65 (5), 1264-1276 (2017).
  23. J. Hunziker, M. Favino, E. Caspari, et al., “Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks,” J. Geophys. Res. Solid Earth 123 (1), 125-143 (2018).
  24. D. L. Johnson, J. Koplik, and R. Dashen, “Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media,” J. Fluid Mech. 176, 379-402 (1987).
  25. L. Kong, B. Gurevich, T. M. Müller, et al., “Effect of Fracture Fill on Seismic Attenuation and Dispersion in Fractured Porous Rocks,” Geophys. J. Int. 195 (3), 1679-1688 (2013).
  26. L. Kong, B. Gurevich, Y. Zhang, and Y. Wang, “Effect of Fracture Fill on Frequency-Dependent Anisotropy of Fractured Porous Rocks,” Geophys. Prospect. 65 (6), 1649-1661 (2017).
  27. M. Lebedev, Y. Zhang, M. Sarmadivaleh, et al., “Carbon Geosequestration in Limestone: Pore-Scale Dissolution and Geomechanical Weakening,” Int. J. Greenh. Gas Con. 66, 106-119 (2017).
  28. R. Martin, D. Komatitsch, and A. Ezziani, “An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for Seismic Wave Propagation in Poroelastic Media,” Geophysics 73 (4), T51-T61 (2008).
  29. Y. J. Masson and S. R. Pride, “Poroelastic Finite Difference Modeling of Seismic Attenuation and Dispersion Due to Mesoscopic-Scale Heterogeneity,” J. Geophys. Res. Solid Earth 112 (2007).
    doi 10.1029/2006JB004592
  30. Y. J. Masson, S. R. Pride, and K. T. Nihei, “Finite Difference Modeling of Biot’s Poroelastic Equations at Seismic Frequencies,” J. Geophys. Res. Solid Earth 111 (2006). doi 10.1029/2006JB004366
  31. Y. J. Masson and S. R. Pride, “Finite-Difference Modeling of Biot’s Poroelastic Equations across All Frequencies,” Geophysics 75 (2), N33-N41 (2010).
  32. P. Moczo, J. Kristek, V. Vavryčuk, et al., “3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities,” Bull. Seismol. Soc. Am. 92 (8), 3042-3066 (2002).
  33. C. D. Montemagno and L. J. Pyrak-Nolte, “Fracture Network Versus Single Fractures: Measurement of Fracture Geometry with X-Ray Tomography,” Phys. Chem. Earth Part A 24 (7), 575-579 (1999).
  34. I. B. Morozov and W. Deng, “Macroscopic Framework for Viscoelasticity, Poroelasticity, and Wave-Induced Fluid Flows - Part 1: General Linear Solid,” Geophysics 81 (1), L1-L13 (2016).
  35. T. M. Müller, B. Gurevich, and M. Lebedev, “Seismic Wave Attenuation and Dispersion Resulting from Wave-Induced Flow in Porous Rocks - A Review,” Geophysics 75 (5), 75A147-75A164 (2010).
  36. P. C. Robinson, “Connectivity of Fracture Systems - a Percolation Theory Approach,” J. Phys. A: Math. Gen. 16 (3), 605-614 (1983).
  37. J. G. Rubino, M. Milani, K. Holliger, et al., “Can We Use Seismic Waves to Detect Hydraulic Connectivity between Fractures?,” SEG Technical Program Expanded Abstracts. 2014. 2894-2898.
  38. J. G. Rubino, T. M. Müller, L. Guarracino, et al., “Seismoacoustic Signatures of Fracture Connectivity,” J. Geophys. Res. Solid Earth 119 (3), 2252-2271 (2014).
  39. M. Tănase and R. C. Veltkamp, “Polygon Decomposition Based on the Straight Line Skeleton,” in Proc. 19th Annual Symposium on Computational Geometry, San Diego, USA, June 8-10, 2003 (ACM Press, New York, 2003), pp. 58-67.
  40. N. H. Tran, “Simulated Annealing Technique in Discrete Fracture Network Inversion: Optimizing the Optimization,” Comput. Geosci. 11 (3), 249-260 (2007).
  41. J. Virieux, “P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method,” Geophysics 51 (4), 889-901 (1986).
  42. D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, “Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves,” Geophysics 79 (4), T219-T232 (2014).
  43. H. Xie, J.-A. Wang, and M. A. Kwaśniewski, “Multifractal Characterization of Rock Fracture Surfaces,” Int. J. Rock Mech. Min. Sci. 36 (1), 19-27 (1999).
  44. C. Xu and P. Dowd, “A New Computer Code for Discrete Fracture Network Modelling,” Comput. Geosci. 36 (3), 292-301 (2010).
  45. C. Xu, P. A. Dowd, K. V. Mardia, and R. J. Fowell, “A Connectivity Index for Discrete Fracture Networks,” Math. Geol. 38 (5), 611-634 (2006).

Загрузки

Опубликован

2018-12-26

Как цитировать

Новиков М.А., Базайкин Я.В., Лисица В.В., Козяев А.А. Моделирование волновых процессов в трещиновато-пористых средах: влияние связности трещин на поглощение сейсмической энергии // Вычислительные методы и программирование. 2018. 19. 235-252. doi 10.26089/NumMet.v19r323

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Наиболее читаемые статьи этого автора (авторов)