Многопараметрическая оптимизация органов управления вектором тяги, основанных на вдуве струи газа в сверхзвуковую часть сопла
Авторы
-
К.Н. Волков
-
В.Н. Емельянов
-
М.С. Яковчук
Ключевые слова:
оптимизация
численное моделирование
двигатель
управление вектором тяги
сопло
струя
вдув
Аннотация
Рассматриваются процессы, сопровождающие вдув сверхзвуковой струи газа в расширяющуюся часть сопла, применительно к созданию управляющих усилий в ракетных двигателях. Разрабатывается подход к многопараметрической оптимизации геометрической формы сопла и параметров вдува струи в сверхзвуковой поток, основанный на применении численной модели турбулентного течения вязкого сжимаемого газа. В качестве параметров оптимизации используются степень нерасчетности вдуваемой струи, угол наклона сопла вдува к оси основного сопла, удаление сопла вдува от критического сечения основного сопла и форма выходного сечения сопла вдува. Проводится сравнение результатов расчетов, полученных для различных конфигураций системы подвода вдуваемого газа. Делаются выводы о влиянии входных параметров задачи на коэффициент изменения тяги сопла.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- R. V. Antonov, V. I. Grebenkin, N. P. Kuznetsov, et al., Thrust Vector Control of Solid-Propellant Rockets: Calculation, Design features, and Experiment (Research Center ’Regular and Chaotic Dynamics’, Izhevsk, 2006) [in Russian].
- A. Kamran and L. Guozhu, “An Integrated Approach for Optimization of Solid Rocket Motor,” Aerosp. Sci. Technol. 17 (1), 50-64 (2012).
- M. Anderson, J. Burkhalter, and R. Jenkins, “Multi-Disciplinary Intelligent Systems Approach to Solid Rocket Motor Design. Part II: Multiple Goal Optimization,” AIAA Paper 2001-3600 (2001).
- M. Yumuşak and S. Eyi, “Design Optimization of Rocket Nozzles in Chemically Reacting Flows,” Comput. Fluids 65, 25-34 (2012).
- M. Yumuşak, “Analysis and Design Optimization of Solid Rocket Motors in Viscous Flows,” Comput. Fluids 75, 22-34 (2013).
- X. Zhao, S. Bayyuk, and S. Zhang, “Aeroelastic Response of Rocket Nozzles to Asymmetric Thrust Loading,” Comput. Fluids 76, 128-148 (2013).
- T. Inoyue and H. B. Nottage, “Experiments on Rocket Thrust Vector Control by Hot Gas Injection,” J. Spacecr. Rockets 3 (5), 737-739 (1966).
- F. W. Spaid and E. E. Zukoski, “A Study of the Interaction of Gaseous Jets from Transverse Slots with Supersonic External Flows,” AIAA J. 6 (2), 205-212 (1968).
- S. Aso, K. Inoue, K. Yamaguchi, and Y. Tani, “A Study on Supersonic Mixing by Circular Nozzle with Various Injection Angles for Air Breathing Engine,” Acta Astronaut. 65 (5-6), 687-695 (2009).
- R. Srinivasan and R. D. W. Bowersox, “Transverse Injection Through Diamond and Circular Ports into a Mach 5.0 Freestream,” AIAA J. 46 (8), 1944-1962 (2008).
- K. Kobayashi, R. D. W. Bowersox, R. Srinivasan, et al., “Experimental and Numerical Studies of Diamond-Shaped Injector in a Supersonic Flow,” J. Propul. Power 26 (2), 373-376 (2010).
- S. Tomioka, T. Kohchi, R. Masumoto, et al., “Supersonic Combustion with Supersonic Injection through Diamond-Shaped Orifices,” J. Propul. Power 27 (6), 1196-1203 (2011).
- W. Huang, J. Liu, L. Jin, and L. Yan, “Molecular Weight and Injector Configuration Effects on the Transverse Injection Flow Field Properties in Supersonic Flows,” Aerosp. Sci. Technol. 32 (1), 94-102 (2014).
- W. Huang, W.-D. Liu, S.-B. Li, et al., “Influences of the Turbulence Model and the Slot Width on the Transverse Slot Injection Flow Field in Supersonic Flows,” Acta Astronaut. 73, 1-9 (2012).
- J. John, S. Shyam, A. Kumar, et al., “Numerical Studies on Thrust Vectoring Using Shock Induced Supersonic Secondary Jet,” Int. J. Mechan. Aerosp. Indust. Mechatron. Eng. 7 (8), 645-651 (2013).
- W. Huang W., Z.-G. Wang, J.-P. Wu, and S.-B. Li, “Numerical Prediction on the Interaction between the Incident Shock Wave and the Transverse Slot Injection in Supersonic Flows,” Aerosp. Sci. Technol. 28 (1), 91-99 (2013).
- N. N. Fedorova, I. A. Fedorchenko, and A. V. Fedorov, “Mathematical Modeling of Jet Interaction with a High-Enthalpy Flow in an Expanding Channel,” Zh. Prikl. Mekh. Tekh. Fiz. 54 (2), 32-45 (2013) [J. Appl. Mech. Tech. Phys. 54 (2), 195-206 (2013)].
- K. N. Volkov, V. N. Emel’yanov, and M. S. Yakovchuk, “Numerical Simulation of the Interaction of a Transverse Jet with a Supersonic Flow Using Different Turbulence Models,” Zh. Prikl. Mekh. Tekh. Fiz. 56 (5), 64-75 (2015) [J. Appl. Mech. Tech. Phys. 56 (5), 789-798 (2015)].
- K. N. Volkov, V. N. Emelyanov, and M. S. Yakovchuk, “Transverse Injection of a Jet from the Surface of a Flat Plate into the Supersonic Flow Over It,” Inzh. Fiz. Zh. 90 (6), 1512-1517 (2017) [J. Eng. Phys. Thermophys. 90 (6), 1439-1444 (2017)].
- V. Emelyanov, K. Volkov, and M. Yakovchuck, “Transverse Jet Injection into a Supersonic Nozzle Flow,” in Proc. 30th Int. Symposium on Shock Waves, Tel Aviv, Israel, July 19-24, 2015 (Spinger, Cham, 2017), Vol. 1, pp. 77-82.
- K. N. Volkov, V. N. Emelyanov, and M. S. Yakovchuk, “Simulation of the Transverse Injection of a Pulsed Jet from the Surface of a Flat Plate into Supersonic Flow,” Zh. Prikl. Mekh. Tekh. Fiz. 58 (6), 114-125 (2017).
- D. Cecere, E. Giacomazzi, and A. Ingenito, “A Review on Hydrogen Industrial Aerospace Applications,” Int. J. Hydrogen Energy 39 (20), 10731-10747 (2014).
- L. Yan, W. Huang, T.-T. Zhang, et al., “Numerical Investigation of the Nonreacting and Reacting Flow Fields in a Transverse Gaseous Injection Channel with Different Species,” Acta Astronaut. 105 (1), 17-23 (2014).
- Yu. A. Zelenkov, “A Method of Multiobjective Optimization on the Basis of Approximate Models for an Optimized Object,” Vychisl. Metody Programm. 11, 250-260 (2010).
- K. N. Volkov, “Solving the Coupled Thermal Problems and the Thermal Load Transfer between a Fluid and a Solid Body,” Vychisl. Metody Programm. 8, 265-274 (2007).
- P. V. Bulat, K. N. Volkov, and M. S. Yakovchuck, “Flow Visualization with Strong and Weak Gas Dynamic Discontinuities in Computational Fluid Dynamics,” Vychisl. Metody Programm. 17, 245-257 (2016).