Численное моделирование волновых процессов в трещиновато-пористых флюидозаполненных средах

Авторы

  • М.А. Новиков Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
  • В.В. Лисица Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН https://orcid.org/0000-0003-3544-4878
  • А.А. Козяев Институт нефти и газа Сибирского федерального университета

DOI:

https://doi.org/10.26089/NumMet.v19r212

Ключевые слова:

уравнения Био, конечно-разностные схемы, сейсмические волны, трещиновато-пористые среды, поглощение сейсмической энергии, связность трещин

Аннотация

Одной из актуальных задач современной прикладной геофизики является выделение характерных признаков наличия развитой трещиноватости в пласте по сейсмическим данным. Более того, необходимо выделять флюидозаполненные системы трещин, образующих связанную систему трещин, способную обеспечивать достаточную гидродинамическую проницаемость резервуара. В настоящей статье представлен численный алгоритм расчета волновых полей в трещиноватых пороупругих средах, основанный на конечно-разностной аппроксимации уравнений Био. На основе численных экспериментов показано, что связность трещин, т.е. наличие систем пересекающихся трещин, существенно повышает поглощение сейсмической энергии, что обусловлено возникновением локальных потоков флюида внутри трещин. Приводится детальный частотный анализ затухания сейсмических волн и обусловленной этим дисперсии.

Авторы

М.А. Новиков

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
проспект Академика Коптюга, 3, 630090, Новосибирск
• младший научный сотрудник

В.В. Лисица

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
проспект Академика Коптюга, 3, 630090, Новосибирск
• заведующий лабораторией

А.А. Козяев

Сибирский федеральный университет,
Институт нефти и газа
Свободный просп., д. 82, строение 6, 660041, Красноярск
• аспирант

Библиографические ссылки

  1. D. M. Vishnevsky, V. V. Lisitsa, and G. V. Reshetova, “Numerical Simulation of Seismic Wave Propagation in Media with Viscoelastic Intrusions,” Vychisl. Metody Programm. 14, 155-165 (2013).
  2. Ya. V. Bazaikin, D. R. Kolyukhin, V. V. Lisitsa, et al., “Effect of CT-Image Scale on Macro-Scale Properties Estimation,” Tekhnol. Seismorazvedki, No. 2, 38-47 (2016).
  3. M. N. Dmitriev and V. V. Lisitsa, “Application of M-PML Reflectionless Boundary Conditions to the Numerical Simulation of Wave Propagation in Anisotropic Media. Part I: Reflectivity,” Sib. Zh. Vych. Mat. 14 (4), 333-344 (2011) [Numer. Anal. Appl. 4 (4), 271-280 (2011)].
  4. V. I. Kostin, V. V. Lisitsa, G. V. Reshetova, and V. A. Tcheverda, “A Finite-Difference Method for the Numerical Simulation of Seismic Wave Propagation through Multiscale Media,” Vychisl. Metody Programm. 12, 321-329 (2011).
  5. M. A. Belonosov, K. Kostov, G. V. Reshetova, et al., “Parallel Computations for the Simulation of Seismic Waves on the Basis of the Additive Schwartz Method,” Vychisl. Metody Programm. 13, 525-535 (2012).
  6. G. V. Reshetova and T. S. Khachkova, “A Numerical Method to Estimate the Effective Elastic Moduli of Rocks from Two- and Three-Dimensional Digital Images of Rock Core Samples,” Vychisl. Metody Programm. 18, 416-433 (2017).
  7. E. I. Romenskii, “A Thermodynamically Consistent System of Conservation Laws for the Flow of a Compressible Fluid in an Elastic Porous Medium,” Sib. Zh. Ind. Mat. 14 (4), 86-97 (2011).
  8. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics , Vol. 2. Correlation Theory of Random Processes (Nauka, Moscow, 1978; Springer, Berlin, 1987).
  9. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1983; Marcel Dekker, New York, 2001).
  10. B. M. Glinsky, D. A. Karavaev, V. V. Kovalevsky, and V. N. Martynov, “Numerical Modeling and Experimental Research of the, “Karabetov Mountain’’ Mud Volcano by Vibroseismic Methods,” Vychisl. Metody Programm. 11, 95-104 (2010).
  11. P. Moczo, J. Kristek, and V. Vavryčuk, “3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities,” Bull. Seismol. Soc. Am. 92 (8), 3042-3066 (2002).
  12. G. E. Backus, “Long-Wave Elastic Anisotropy Produced by Horizontal Layering,” J. Geophys. Res. 67 (11), 4427-4440 (1962).
  13. J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114 (2), 185-200 (1994).
  14. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Am. 28 (2), 179-191 (1956).
  15. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” J. Acoust. Soc. Am. 28 (2), 168-178 (1956).
  16. J. M. Carcione, C. Morency, and J. E. Santos, “Computational Poroelasticity - A Review,” Geophysics 75 (5), 75A229-75A243 (2010).
  17. J.-B. Chen, “A 27-Point Scheme for a 3D Frequency-Domain Scalar Wave Equation Based on an Average-Derivative Method,” Geophys. Prospect. 62 (2), 258-277 (2014).
  18. F. Collino and C. Tsogka, “Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media,” Geophysics 66 (1), 294-307 (2001).
  19. C. H. Arns, M. A. Knackstedt, W. V. Pinczewski, and E. J. Garboczi, “Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Agreement Between Theory and Experiment,” Geophysics 67 (5), 1396-1405 (2002).
  20. J. de la Puente, M. Dumbser, M. K854ser, and H. Igel, “Discontinuous Galerkin Methods for Wave Propagation in Poroelastic Media,” Geophysics 73 (5), T77-T97 (2008).
  21. L. Dovgilovich and I. Sofronov, “High-Accuracy Finite-Difference Schemes for Solving Elastodynamic Problems in Curvilinear Coordinates within Multiblock Approach,” Appl. Numer. Math. 93, 176-194 (2015).
  22. F. H. Drossaert and A. Giannopoulos, “A Nonsplit Complex Frequency-Shifted PML Based on Recursive Integration for FDTD Modeling of Elastic Waves,” Geophysics 72 (2), T9-T17 (2007).
  23. L. Kong, B. Gurevich, T. M. Müller, et al., “Effect of Fracture Fill on Seismic Attenuation and Dispersion in Fractured Porous Rocks,” Geophys. J. Int. 195 (3), 1679-1688 (2013).
  24. F. Rubio, M. Hanzich, A. Farrés, et al., “Finite-Difference Staggered Grids in GPUs for Anisotropic Elastic Wave Propagation Simulation,” Comput. Geosci. 70, 181-189 (2014).
  25. D. L. Johnson, J. Koplik, and R. Dashen, “Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media,” J. Fluid Mech. 176, 379-402 (1987).
  26. A. R. Levander, “Fourth-Order Finite-Difference P-SV Seismograms,” Geophysics 53 (11), 1425-1436 (1988).
  27. V. Lisitsa, O. Podgornova, and V. Tcheverda, “On the Interface Error Analysis for Finite Difference Wave Simulation,” Comput. Geosci. 14 (4), 769-778 (2010).
  28. Y. J. Masson, S. R. Pride, and K. T. Nihei, “Finite Difference Modeling of Biot’s Poroelastic Equations at Seismic Frequencies,” J. Geophys. Res. Solid Earth 111 (2006). doi 10.1029/2006JB004366
  29. Y. J. Masson and S. R. Pride, “Finite-Difference Modeling of Biot’s Poroelastic Equations across All Frequencies,” Geophysics 75 (2), N33-N41 (2010).
  30. Y. J. Masson and S. R. Pride, “Poroelastic Finite Difference Modeling of Seismic Attenuation and Dispersion Due to Mesoscopic-Scale Heterogeneity,” J. Geophys. Res. Solid Earth 112 (2007).
    doi 10.1029/2006JB004592
  31. G. Mavko, T.Mukerji, and J. Dvorkin, The Rock Physics Handbook (Cambridge Univ. Press, New York, 2009).
  32. D. Michèa and D. Komatitsch, “Accelerating a Three-Dimensional Finite-Difference Wave Propagation Code Using GPU Graphics Cards,” Geophys. J. Int. 182 (1), 389-402 (2010).
  33. T. M. Müller, B. Gurevich, and M. Lebedev, “Seismic Wave Attenuation and Dispersion Resulting from Wave-Induced Flow in Porous Rocks - A Review,” Geophysics 75 (5), 75A147-75A164 (2010).
  34. M. Kuteynikova, N. Tisato, R. J854nicke, and B. Quintal, “Numerical Modeling and Laboratory Measurements of Seismic Attenuation in Partially Saturated Rock,” Geophysics 79 (2), L13-L20 (2014).
  35. D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, “Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves,” Geophysics 79 (4), T219-T232 (2014).
  36. A. Kameda, J. Dvorkin, Y. Keehm, et al., “Permeability-Porosity Transforms from Small Sandstone Fragments,” Geophysics 71 (1), N11-N19 (2006).
  37. Q. Qi, T. M. Müller, B. Gurevich, et al., “Quantifying the Effect of Capillarity on Attenuation and Dispersion in Patchy-Saturated Rocks,” Geophysics 79 (5), WB35-WB50 (2014).
  38. B. Quintal, H. Steeb, M. Frehner, and S. M. Schmalholz, “Quasi-Static Finite-Element Modeling of Seismic Attenuation and Dispersion Due to Wave-Induced Fluid Flow in Poroelastic Media,” J. Geophys. Res. 116 (2011). doi 10.1029/2010JB007475
  39. M. Schoenberg and F. Muir, “A Calculus for Finely Layered Anisotropic Media,” Geophysics  54} (5), 581-589 (1989).
  40. J. G. Rubino, T. M. Müller, L. Guarracino, et al., “Seismoacoustic Signatures of Fracture Connectivity,” J. Geophys. Res. Solid Earth 119 (3), 2252-2271 (2014).
  41. J. Virieux, “P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method,” Geophysics 51 (4), 889-901 (1986).

Загрузки

Опубликован

2018-04-04

Как цитировать

Новиков М.А., Лисица В.В., Козяев А.А. Численное моделирование волновых процессов в трещиновато-пористых флюидозаполненных средах // Вычислительные методы и программирование. 2018. 19. 130-149. doi 10.26089/NumMet.v19r212

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Наиболее читаемые статьи этого автора (авторов)