Алгоритмическая цепочка для прямого персонифицированного моделирования ЭКГ и оценка времени ее работы

Авторы

  • А.С. Юрова Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский университет)

DOI:

https://doi.org/10.26089/NumMet.v19r107

Ключевые слова:

сегментация медицинских изображений, персонифицированные модели, текстурный анализ, прямое моделирование ЭКГ

Аннотация

Предложена последовательность алгоритмов, позволяющая реализовать прямое моделирование электрокардиографии с использованием данных об индивидуальных анатомических особенностях пациентов. Приведенная цепочка включает в себя алгоритмы сегментации медицинских изображений, построения расчетной сетки и решения прямой задачи электрокардиографии. Реализовано ускорение алгоритмов сегментации и решения прямой задачи электрокардиографии. Дана оценка времени работы предложенной последовательности алгоритмов.

Автор

А.С. Юрова

Библиографические ссылки

  1. L. Rineau and M. Yvinec, “A Generic Software Design for Delaunay Refinement Meshing,” Comp. Geom. Theory Appl. 38 (1-2), 100-110 (2007).
  2. Yu. V. Vasilevskii, A. A. Danilov, K. N. Lipnikov, and V. N. Chugunov, Automatized Technologies for Constructing Unstructured Computational Grids (Fizmatlit, Moscow, 2016) [in Russian].
  3. CGAL 4.11 - 3D Mesh Generation, User Manual.
    https://doc.cgal.org/latest/Mesh_3/index.html . Cited February 13, 2018.
  4. Advanced Numerical Instruments 3D.
    https://sourceforge.net/projects/ani3d . Cited February 13, 2018.
  5. J. Sundnes, B. F. Nielsen, K. A. Mardal, et al., “On the Computational Complexity of the Bidomain and the Monodomain Models of Electrophysiology,” Ann. Biomed. Eng. 34 (7), 1088-1097 (2006).
  6. F. B. Sachse, M. Wolf, C. Werner, and K. Meyer-Waarden, “Extension of Anatomical Models of the Human Body: Three-Dimensional Interpolation of Muscle Fiber Orientation Based on Restrictions,” J. Comput. Inf. Techn. 6 (1), 95-101 (1998).
  7. A. V. Strutynsky, Electrocardiogram: Analysis and Interpretation (MEDPress-inform, Moscow, 2012) [in Russian].
  8. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, Upper Saddle River, 2006).
  9. A. Buades, B. Coll, and J.-M. Morel, “A Non-Local Algorithm for Image Denoising,” in Proc. 2005 IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, USA, June 20-25, 2005 (IEEE Press, Washington, DC, 2005), Vol. 2, pp. 60-65.
  10. A. Buades, B. Coll, and J.-M. Morel, “Non-Local Means Denoising,” Image Processing On Line 1, 208-212 (2011). doi 10.5201/ipol.2011.bcm_nlm
  11. Amira for Life Sciences. 3D Visualization and Analysis Software.
    https://www.fei.com/software/amira-3d-for-life-sciences/. Cited February 13, 2018.
  12. gputools - OpenCL Accelerated Volume Processing in Python.
    https://github.com/maweigert/gputools . Cited February 13, 2018.
  13. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst. Man Cybern. SMC-3} (6), 610-621 (1973).
  14. ITK-SNAP.
    http://www.itksnap.org . Cited February 13, 2018.
  15. Convert3D Medical Image Processing Tool.
    https://sourceforge.net/projects/c3d . Cited February 13, 2018.
  16. P. A. Yushkevich, J. Piven, H. C. Hazlett, et al., “User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” Neuroimage 31 (3), 1116-1128 (2006).
  17. A. Danilov, R. Pryamonosov, and A. Yurova, “Image Segmentation for Cardiovascular Biomedical Applications at Different Scales,” Computation 4 (3) (2016). doi 10.3390/computation4030035
  18. R. E. Mason and I. Likar, “A New System of Multiple-Lead Exercise Electrocardiography,” Am. Heart J. 71 (2), 196-205 (1966).
  19. D. U. J. Keller, F. M. Weber, G. Seemann, and O. Dössel, “Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs,” IEEE Trans. Biomed. Eng. 57 (7), 1568-1576 (2010).
  20. M. Hofer, CT Teaching Manual (Georg Thieme Verlag, Stuttgart, 2007; Meditsinskaya Literatura, Moscow, 2008).
  21. N. Zemzemi, M. O. Bernabeu, J. Saiz, et al., “Computational Assessment of Drug-Induced Effects on the Electrocardiogram: from Ion Channel to Body Surface Potentials,” Br. J. Pharmacol. 168 (3), 718-733 (2013).
  22. F. M. Weber, D. U. J. Keller, S. Bauer, et al., “Predicting Tissue Conductivity Influences on Body Surface Potentials - An Efficient Approach Based on Principal Component Analysis,” IEEE Trans. Biomed. Eng. 58 (2), 265-273 (2011).
  23. B. F. Nielsen, M. Lysaker, and P. Grøttum, “Computing Ischemic Regions in the Heart with the Bidomain Model - First Steps Towards Validation,” IEEE Trans. Med. Imaging 32 (6), 1085-1096 (2013).

Загрузки

Опубликован

2018-02-25

Как цитировать

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения