Метод адаптивной искусственной вязкости для численного решения уравнений вязкого сжимаемого теплопроводного газа.

Авторы

  • Д.В. Иванов ОАО «Научно-производственное предприятие «Темп» имени Ф.Короткова»
  • Г.М. Кобельков Московский государственный университет имени М.В. Ломоносова
  • М.А. Ложников Московский государственный университет имени М.В. Ломоносова https://orcid.org/0000-0002-8727-0091
  • А.Ф. Харисов ОАО «Научно-производственное предприятие «Темп» имени Ф.Короткова»

DOI:

https://doi.org/10.26089/NumMet.v19r105

Ключевые слова:

численное моделирование, газовая динамика, неструктурированные сетки, искусственная вязкость

Аннотация

Статья посвящена численному решению уравнений динамики вязкого сжимаемого теплопроводного газа на неструктурированных тетраэдальных сетках. Предложена комбинация методов МакКормака и Лакса-Вендроффа, которая позволяет провести приближенную монотонизацию разностной схемы с помощью введения адаптивной искусственной вязкости и метода «замороженных» коэффициентов. Результаты расчетов согласуются с натурными экспериментами.

Авторы

Д.В. Иванов

ОАО «Научно-производственное предприятие «Темп» имени Ф.Короткова»
ул. Правды, д. 23, 127015, Москва
• генеральный директор

Г.М. Кобельков

М.А. Ложников

А.Ф. Харисов

Библиографические ссылки

  1. I. V. Popov and I. V. Fryazinov, “Finite-Difference Method for Solving Gas Dynamics Equations Using Adaptive Artificial Viscosity,” Mat. Model. 20 (8), 48-60 (2008) [Math. Models Comput. Simul. 1 (4), 493-502 (2009)].
  2. I. V. Popov and I. V. Fryazinov, “Adaptive Artificial Viscosity for Multidimensional Gas Dynamics for Euler Variables in Cartesian Coordinates,” Mat. Model. 22 (1), 32-45 (2010) [Math. Models Comput. Simul. 2 (4), 429-442 (2010)].
  3. I. V. Popov and I. V. Fryazinov, “Calculations of Two-Dimensional Test Problems by the Method of Adaptive Viscosity,” Mat. Model. 22 (5), 57-66 (2010) [Math. Models Comput. Simul. 2 (6), 724-732 (2010)].
  4. I. V. Popov and I. V. Fryazinov, “A Method of Adaptive Artificial Viscosity,” Mat. Model. 22 (7), 121-128 (2010) [Math. Models Comput. Simul. 3 (1), 18-24 (2011)].
  5. I. V. Popov and I. V. Fryazinov, “On the New Choice of Adaptive Artificial Viscosity,” Mat. Model. 22 (12), 23-32 (2010) [Math. Models Comput. Simul. 3 (4), 411-418 (2011)].
  6. I. V. Popov and I. V. Fryazinov, “Finite-Difference Method for Computation of 3-D Gas Dynamics Equations with Artificial Viscosity,” Mat. Model. 23 (3), 89-100 (2011) [Math. Models Comput. Simul. 3 (5), 587-595 (2011)].
  7. I. V. Popov and I. V. Fryazinov, “Method of Adaptive Artificial Viscosity for Gas Dynamics Equations on Triangular and Tetrahedral Grids,” Mat. Model. 24 (6), 109-127 (2012) [Math. Models Comput. Simul. 5 (1), 50-62 (2013)].
  8. A. A. Samarskii, A. V. Koldoba, Yu. A. Poveshchenko, et al., Difference Schemes on Irregular Grids (Kriterii, Minsk, 1996) [in Russian].
  9. A. A. Samarskii and Yu. P. Popov, Difference Schemes for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].
  10. T. G. Elizarova, Quasi-Gas-Dynamic Equations and Methods of Calculation of Viscous Flows (Nauchnyi Mir, Moscow, 2007) [in Russian].
  11. P. Lax and B. Wendroff, “Systems of Conservation Laws,” Commun. Pure Appl. Math. 13 (2), 217-237 (1960).
  12. R. W. MacCormack, “The Effect of Viscosity in Hypervelocity Impact Cratering,” AIAA Paper No. 69-354 (1969).
  13. C. Geuzaine and J.-F. Remacle, “Gmsh: A Three-Dimensional Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities,” Int. J. Numer. Meth. Eng. 79 (11), 1309-1331 (2009).

Загрузки

Опубликован

2018-02-11

Как цитировать

Иванов Д.В., Кобельков Г.М., Ложников М.А., Харисов А.Ф. Метод адаптивной искусственной вязкости для численного решения уравнений вязкого сжимаемого теплопроводного газа. // Вычислительные методы и программирование. 2018. 19. 51-62. doi 10.26089/NumMet.v19r105

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения