DOI: https://doi.org/10.26089/NumMet.v19r103

Численное моделирование турбулентности и переноса мелкодисперсной примеси в городских каньонах

Авторы

  • А.В. Глазунов

Ключевые слова:

турбулентность
городская среда
распространение примесей
лагранжевы методы переноса частиц
метод крупных вихрей
LES-модель

Аннотация

При помощи LES-модели, содержащей блок лагранжева переноса частиц, проведены расчеты турбулентности и распространения мелкодисперсных примесей в городской среде. Рассматривалась упрощенная геометрия периодической последовательности городских каньонов при поперечном направлении среднего ветра. Проведено тестирование различных лагранжевых методов и их сравнение с эйлеровыми методами переноса концентрации примесей, а также сравнение результатов расчетов с лабораторными данными. Выполнены расчеты переноса тяжелых углеродных частиц с размерами до семидесяти микрон в диаметре. На основе анализа лагранжевых траекторий частиц выявлены закономерности переноса мелкодисперсной примеси турбулентностью и крупными вихрями.


Загрузки

Опубликован

2018-01-28

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Автор

А.В. Глазунов

Институт вычислительной математики имени Г.И. Марчука РАН (ИВМ РАН)
ул. Губкина, 8, 119333, Москва
• ведущий научный сотрудник


Библиографические ссылки

  1. G. Steinfeld, S. Raasch, and T. Markkanen, “Footprints in Homogeneously and Heterogeneously Driven Boundary Layers Derived from a Lagrangian Stochastic Particle Model Embedded into Large-Eddy Simulation,” Bound.-Layer Meteor. 129 (2), 225-248 (2008).
  2. W. Wang, Y. Xu, and E. Ng, “Large-Eddy Simulations of Pedestrian-Level Ventilation for Assessing a Satellite-Based Approach to Urban Geometry Generation,” Graph. Models (2017).
    doi 10.1016/j.gmod.2017.06.003
  3. M. Keck, S. Raasch, M. O. Letzel, and E. Ng, “First Results of High Resolution Large-Eddy Simulations of the Atmospheric Boundary Layer,” J. Heat Island Inst. Int. 9 (2), 39-43 (2014).
  4. C.-H. Liu, M. C. Barth, and D. Y. C. Leung, “Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios,” J. Appl. Meteor. 43 (10), 1410-1424 (2004).
  5. C.-H. Liu, D. Y. C. Leung, and M. C. Barth, “On the Prediction of Air and Pollutant Exchange Rates in Street Canyons of Different Aspect Ratios Using Large-Eddy Simulation,” Atmos. Environ. 39 (9), 1567-1574 (2005).
  6. X.-X. Li, C.-H. Liu, and D. Y. C. Leung, “Large-Eddy Simulation of Flow and Pollutant Dispersion in High-Aspect-Ratio Urban Street Canyons with Wall Model,” Bound.-Layer Meteor. 129 (2), 249-268 (2008).
  7. Z. Xie and I. P. Castro, “LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles,” Flow Turbul. Combust. 76 (3), 291-312 (2006).
  8. O. Coceal, T. G. Thomas, I. P. Castro, and S. E. Belcher, “Mean Flow and Turbulence Statistics Over Groups of Urban-like Cubical Obstacles,” Bound.-Layer Meteor. 121 (3), 491-519 (2006).
  9. A. V. Glazunov, “Large-Eddy Simulation of Turbulence with the Use of a Mixed Dynamic Localized Closure: Part 1. Formulation of the Problem, Model Description, and Diagnostic Numerical Tests,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45 (1), 7-28 (2009) [Izv., Atmos. Ocean. Phys. 45 (1), 5-24 (2009)].
  10. A. V. Glazunov, “Numerical Modeling of Turbulent Flows over an Urban-Type Surface: Computations for Neutral Stratification,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 50 (2), 156-165 (2014) [Izv., Atmos. Ocean. Phys. 50 (2), 134-142 (2014)].
  11. A. V. Glazunov, “Numerical Simulation of Stably Stratified Turbulent Flows over an Urban Surface: Spectra and Scales and Parameterization of Temperature and Wind-Velocity Profiles,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 50 (4), 406-419 (2014) [Izv., Atmos. Ocean. Phys. 50 (4), 356-368 (2014)].
  12. A. Glazunov, Ü. Rannik, V. Stepanenko, et al., “Large-Eddy Simulation and Stochastic Modeling of Lagrangian Particles for Footprint Determination in the Stable Boundary Layer,” Geosci. Model Dev. 9 (9), 2925-2949 (2016).
  13. J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved Subgrid-Scale Models for Large-Eddy Simulation,” in Proc. 13th Fluid and Plasma Dynamics Conference, Snowmass, USA, July 14-16, 1980.
    doi 10.2514/6.1980-1357
  14. Y. Morinishi, T. S. Lund, O. V. Vasilyev. and P. Moin, “Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow,” J. Comput. Phys. 143 (1), 90-124 (1998).
  15. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A 3 (7), 1760-1765 (1991).
  16. D. K. Lilly, “The Representation of Small-Scale Turbulence in Numerical Simulation Experiments,” in Proc. IBM Sci. Comput. Symp. Environ. Sci., Yorktown Heights, USA, November 14-16, 1966 (IBM Press, White Plains, 1967), pp. 195-210.
  17. U. Piomelli, “Wall-Layer Models for Large-Eddy Simulations,” Prog. Aerosp. Sci. 44 (6), 437-446 (2008).
  18. P. R. Spalart, “Detached-Eddy Simulation,” Annu. Rev. Fluid Mech. 41 (1), 181-202 (2009).
  19. P. A. Durbin, Stochastic Differential Equations and Turbulent Dispersion , NASA Reference Publication No. 1103 (Lewis Research Center, Cleveland, 1983).
  20. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Nauka, Moscow, 1967; MIT Press, Cambridge, 1971).
  21. D. J. Thomson, “Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows,” J. Fluid Mech. 180, 529-556 (1987).
  22. O. Kurbanmuradov and K. Sabelfeld, “Lagrangian Stochastic Models for Turbulent Dispersion in the Atmospheric Boundary Layer,” Bound.-Layer Meteor. 97 (2), 191-218 (2000).
  23. A. V. Glazunov, “Large-Eddy Simulation of Turbulence with the Use of a Mixed Dynamic Localized Closure: Part 2. Numerical Experiments: Simulating Turbulence in a Channel with Rough Boundaries,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45 (1), 29-42 (2009) [Izv., Atmos. Ocean. Phys. 45 (1), 25-36 (2009)].
  24. A. V. Glazunov and V. P. Dymnikov, “Spatial Spectra and Characteristic Horizontal Scales of Temperature and Velocity Fluctuations in the Convective Boundary Layer of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 49 (1), 37-61 (2013) [Izv., Atmos. Ocean. Phys. 49 (1), 33-54 (2013)].
  25. A. Clifton and M. Lehning, “Improvement and Validation of a Snow Saltation Model Using Wind Tunnel Measurements,” Earth Surf. Proc. Land. 33 (14), 2156-2173 (2008).
  26. W. R. Michalek, J. G. M. Kuerten, J. C. H. Zeegers, et al., “A Hybrid Stochastic-Deconvolution Model for LES of Particle-Laden Flow,” in Direct and Large-Eddy Simulation IX (Springer, Cham, 2015), pp. 631-637.
  27. B. J. Geurts and J. G. M. Kuerten, “Ideal Stochastic Forcing for the Motion of Particles in Large-Eddy Simulation Extracted from Direct Numerical Simulation of Turbulent Channel Flow,” Phys. Fluids 24 (2012).
    doi 10.1063/1.4745857
  28. J. F. Kok and N. O. Renno, “A Comprehensive Numerical Model of Steady State Saltation J. Geophys. Res. Atmos. 114 (2009).
    doi 10.1029/2009JD011702
  29. C. D. G. Zwaaftink, M. Diebold, S. Horender, et al., “Modelling Small-Scale Drifting Snow with a Lagrangian Stochastic Model Based on Large-Eddy Simulations,” Bound.-Layer Meteor. 153 (1), 117-139 (2014).
  30. R. N. Meroney, M. Pavageau, S. Rafailidis, and M. Schatzmann, “Study of Line Source Characteristics for 2-D Physical Modelling of Pollutant Dispersion in Street Canyons,” J. Wind Eng. Ind. Aerodyn. 62 (1), 37-56 (1996).
  31. M. Pavageau, Concentration Fluctuations in Urban Street Canyons - Groundwork for Future Studies , Technical Report (Meteorological Inst., Hamburg, 1996).
  32. M. Pavageau and M. Schatzmann, “Wind Tunnel Measurements of Concentration Fluctuations in an Urban Street Canyon,” Atmos. Environ. 33 (24-25), 3961-3971 (1999).
  33. X.-X. Li, D. Y. C. Leung, C.-H. Liu, and K. M.  Lam, “Physical Modeling of Flow Field inside Urban Street Canyons,” J. Appl. Meteor. Climatol. 47 (7), 2058-2067 (2008).
  34. Y. Tominaga and T. Stathopoulos, “CFD Simulation of Near-Field Pollutant Dispersion in the Urban Environment: A Review of Current Modeling Techniques,” Atmos. Environ. 79, 716-730 (2013).
  35. A. Kovar-Panskus, P. Louka, J.-F. Sini, et al., “Influence of Geometry on the Mean Flow within Urban Street Canyons - A Comparison of Wind Tunnel Experiments and Numerical Simulations,” Water Air Soil Pollut. 2 (5-6), 365-380 (2002).
  36. M. Llaguno-Munitxa, E. Bou-Zeid, and M. Hultmark, “The Influence of Building Geometry on Street Canyon Air Flow: Validation of Large Eddy Simulations against Wind Tunnel Experiments,” J. Wind Eng. Ind. Aerodyn. 165, 115-130 (2017).
  37. G. I. Barenblatt and G. S. Golitsyn, “Local Structure of Mature Dust Storms,” J. Atmos. Sci. 31 (7), 1917-1933 (1974).