Численное моделирование газодинамических и физико-химических процессов при обтекании тел гиперзвуковым потоком
Авторы
-
К.Н. Волков
-
В.Н. Емельянов
-
А.Г. Карпенко
Ключевые слова:
аэродинамика
гиперзвуковое обтекание
вычислительная газовая динамика
реальный газ
метод конечных объемов
ударная волна
диссоциация
Аннотация
Рассматриваются вопросы, связанные с численным моделированием газодинамических и физико-химических процессов, сопровождающих гиперзвуковое обтекание тел различной формы. Математическая модель включает в себя уравнения газовой динамики, записанные для реального газа, и уравнения химической кинетики, описывающие равновесные процессы в высокотемпературном воздухе. Для дискретизации основных расчетных соотношений применяется метод конечных объемов и различные разностные схемы для дискретизации конвективных потоков. Возможности разработанной вычислительной процедуры показываются на примере решения ряда задач физико-химической газовой динамики. Расчеты проводятся с использованием графических процессоров общего назначения. Обсуждается время счета, достигнутое при использовании различных разностных схем и подходов к описанию свойств высокотемпературного воздуха.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- J. D. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Press, Reston, 2006).
- S. T. Surzhikov, Numerical Study of Aerothermodynamics of Hypersonic Flow over Blunt Bodies by the Example of Experimental Data Analysis (Inst. for Problems in Mechanics, Moscow, 2011) [in Russian].
- Yu. P. Golovachev, Numerical Simulation of Viscous Gas Flows in Shock Layers (Nauka, Moscow, 1996) [in Russian].
- A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
- S. T. Surzhikov, “A Numerical Method for Hypersonic Flow over a Sphere Using the AUSM Finite-Difference Schemes,” Vestn. Bauman Mosk. Tekh. Univ., Ser. 3: Mashinostroenie, No. 3, 7-33 (2005).
- J. J. Quirk, “A Contribution to the Great Riemann Solver Debate,” Int. J. Numer. Methods Fluids 18 (6), 555-574 (1994).
- G. A. Tarnavsky and A. V. Aliev, “Specific Features of High-Speed Flight Aerodynamics: Computer Simulation of Hypersonic Flow around the Head of an Object,” Vychisl. Metody Programm. 9, 371-394 (2008).
- R. W. MacCormack, “Carbuncle Computational Fluid Dynamics Problem for Blunt-Body Flows,” J. Aerospace Inf. Sys. 10 (5), 229-239 (2013).
- A. S. Yur’ev, S. Yu. Pirogov, and E. V. Ryzhov, Control of Flow over Bodies Using the Laser Energy Input into High-Speed Gas Flow (Professional, St. Petersburg, 2006) [in Russian].
- V. Kulkarni, G. M. Hegde, G. Jagadeesh, et al., “Aerodynamic Drag Reduction by Heat Addition into the Shock Layer for a Large Angle Blunt Cone in Hypersonic Flow,” Phys. Fluids 20 (2008).
doi 10.1063/1.2944982
- V. A. Lashkov, A. G. Karpenko, R. S. Khoronzhuk, and I. Ch. Mashek, “Effect of Mach Number on the Efficiency of Microwave Energy Deposition in Supersonic Flow,” Phys. Plasmas 23 (2016).
doi 10.1063/1.4949524
- V. E. Borisov, A. E. Lutsky, A. V. Severin, and Ya. V. Khankhasaeva, Active Impact on the Flow around Hypersonic Flying Vehicles , Preprint No. 137 (Keldysh Institute of Applied Mathematics, Moscow, 2016).
- K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, A. G. Karpenko, and I. V. Teterina, Acceleration of Gasdynamic Calculations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].
- M. W. Chase, J. L. Curnutt, R. A. McDonald, and A. N. Syverud, “JANAF Thermochemical Tables,” J. Phys. Chem. Ref. Data 7 (3), 793-940 (1978).
- V. P. Glushko (Ed.), Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978) [in Russian].
- A. S. Predvoditelev, E. V. Stupochenko, E. V. Samuilov, I. P. Stakhanov, A. S. Pleshanov, and I. B. Rozhdestvenskii, Tables of Thermodynamic Functions of Air for the Temperature Range 6000-12000° K and Pressure Range 0.001-1000 atm (Izd. Akad. Nauk SSSR, Moscow, 1957; Infosearch, London, 1958).
- A. S. Predvoditelev, E. V. Stupochenko, A. S. Pleshanov, et al., Tables of Thermodynamic Functions of Air for the Temperature Range 12000-20000° K and Pressure Range 0.001-1000 atm (Izd. Akad. Nauk SSSR, Moscow, 1959) [in Russian].
- A. S. Predvoditelev, E. V. Stupochenko, E. V. Samuilov, et al., Tables of Thermodynamic Functions of Air for the Temperature Range 200-6000° K and Pressure Range 0.00001-100 atm (Izd. Akad. Nauk SSSR, Moscow, 1962) [in Russian].
- V. A. Levin, V. G. Gromov, and N. E. Afonina, “Numerical Analysis of the Effect of Local Energy Supply on the Aerodynamic Drag and Heat Transfer of a Spherically Blunted Body in a Supersonic Air Flow,” Zh. Prikl. Mekh. Tekh. Fiz. 41 (5), 171-179 (2000) [J. Appl. Mech. Tech. Phys. 41 (5), 915-922 (2000)].
- A. N. Kraiko, “Analytic Representation of Thermodynamic Functions of Air,” Inzh. Zh. 4 (3), 548-550 (1964).
- A. N. Kraiko and V. E. Makarov, “Explicit Analytic Formulas Defining the Equilibrium Composition and Thermodynamic Functions of Air for Temperatures from 200 to 20000 K,” Teplofiz. Vys. Temp. 34 (2), 208-219 (1996) [High Temp. 34 (2), 202-213 (1996)].
- N. A. Brykov, K. N. Volkov, V. N. Emelyanov, and I. V. Teterina, “Flows of Ideal and Real Gases in Channels of Variable Cross Section with Unsteady Localized Energy Supply,” Vychisl. Metody Programm. 18, 20-40 (2017).
- E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 1999).
- V. V. Rusanov, “The Calculation of the Interaction of Non-Stationary Shock Waves with Barriers,” Zh. Vychisl. Mat. Mat. Fiz. 1 (2), 267-279 (1961) [USSR Comput. Math. Math. Phys. 1 (2), 304-320 (1962)].
- T. J. Barth and D. C. Jespersen, “The Design and Application of Upwind Schemes on Unstructured Meshes,” AIAA Paper No. 89-0366 (1989).
- V. N. Emelyanov, A. G. Karpenko, A. S. Kozelkov, et al., “Analysis of Impact of General-Purpose Graphics Processor Units in Supersonic Flow Modeling,” Acta Astronaut. 135, 198-207 (2017).
- V. Emelyanov, A. Karpenko, and K. Volkov, “Development and Acceleration of Unstructured Mesh-Based CFD Solver,” Progress in Flight Physics 9, 387-408 (2017).
- R. K. Lobb, “Experimental Measurement of Shock Detachment Distance on Spheres Fired in Air at Hypervelocities,” in The High Temperature Aspects of Hypersonic Flow (Pergamon, Oxford, 1964), pp. 519-527.
- S. V. Zhluktov, G. D. Smekhov, and G. A. Tirskii, “Rotation-Vibration-Dissociation Interaction in a Multicomponent Nonequilibrium Viscous Shock Layer,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 166-180 (1994) [Fluid Dyn. 29 (6), 876-887 (1994)].
- T. J. McIntyre, A. I. Bishop, H. Rubinsztein-Dunlop, and P. A. Gnoffo, “Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder,” AIAA J. 41 (11), 2157-2161 (2003).
- L. D. Huebner, K. E. Rock, E. G. Ruf, et al., “Hyper-X Flight Engine Ground Testing for Flight Risk Reduction,” J. Spacecr. Rockets 38 (6), 844-852 (2001).
- D. E. Reubush, L. T. Nguyen, and V. L. Rausch, “Review of X-43A Return to Flight Activities and Current Status,” AIAA Paper No. 2003-7085 (2003).
- M. Mirmirani, C. Wu, A. Clark, et al., “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example,” in Proc. Workshop on Modeling and Control of Complex Systems, Ayia Napa, Cyprus, June 30-July 1, 2005 , 15 pp.