DOI: https://doi.org/10.26089/NumMet.v18r433

Численное моделирование газодинамических и физико-химических процессов при обтекании тел гиперзвуковым потоком

Авторы

  • К.Н. Волков
  • В.Н. Емельянов
  • А.Г. Карпенко

Ключевые слова:

аэродинамика
гиперзвуковое обтекание
вычислительная газовая динамика
реальный газ
метод конечных объемов
ударная волна
диссоциация

Аннотация

Рассматриваются вопросы, связанные с численным моделированием газодинамических и физико-химических процессов, сопровождающих гиперзвуковое обтекание тел различной формы. Математическая модель включает в себя уравнения газовой динамики, записанные для реального газа, и уравнения химической кинетики, описывающие равновесные процессы в высокотемпературном воздухе. Для дискретизации основных расчетных соотношений применяется метод конечных объемов и различные разностные схемы для дискретизации конвективных потоков. Возможности разработанной вычислительной процедуры показываются на примере решения ряда задач физико-химической газовой динамики. Расчеты проводятся с использованием графических процессоров общего назначения. Обсуждается время счета, достигнутое при использовании различных разностных схем и подходов к описанию свойств высокотемпературного воздуха.


Загрузки

Опубликован

2017-10-01

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

К.Н. Волков

Балтийский государственный технический университет «Военмех» имени Д.Ф. Устинова
1-я Красноармейская ул., 1, 190005, Санкт-Петербург
• ведущий научный сотрудник

В.Н. Емельянов

Балтийский государственный технический университет «Военмех» имени Д.Ф. Устинова
1-я Красноармейская ул., 1, 190005, Санкт-Петербург
• профессор

А.Г. Карпенко

Санкт-Петербургский государственный университет
Университетская набережная 7–9, 199034, Санкт-Петербург
• доцент


Библиографические ссылки

  1. J. D. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Press, Reston, 2006).
  2. S. T. Surzhikov, Numerical Study of Aerothermodynamics of Hypersonic Flow over Blunt Bodies by the Example of Experimental Data Analysis (Inst. for Problems in Mechanics, Moscow, 2011) [in Russian].
  3. Yu. P. Golovachev, Numerical Simulation of Viscous Gas Flows in Shock Layers (Nauka, Moscow, 1996) [in Russian].
  4. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
  5. S. T. Surzhikov, “A Numerical Method for Hypersonic Flow over a Sphere Using the AUSM Finite-Difference Schemes,” Vestn. Bauman Mosk. Tekh. Univ., Ser. 3: Mashinostroenie, No. 3, 7-33 (2005).
  6. J. J. Quirk, “A Contribution to the Great Riemann Solver Debate,” Int. J. Numer. Methods Fluids 18 (6), 555-574 (1994).
  7. G. A. Tarnavsky and A. V. Aliev, “Specific Features of High-Speed Flight Aerodynamics: Computer Simulation of Hypersonic Flow around the Head of an Object,” Vychisl. Metody Programm. 9, 371-394 (2008).
  8. R. W. MacCormack, “Carbuncle Computational Fluid Dynamics Problem for Blunt-Body Flows,” J. Aerospace Inf. Sys. 10 (5), 229-239 (2013).
  9. A. S. Yur’ev, S. Yu. Pirogov, and E. V. Ryzhov, Control of Flow over Bodies Using the Laser Energy Input into High-Speed Gas Flow (Professional, St. Petersburg, 2006) [in Russian].
  10. V. Kulkarni, G. M. Hegde, G. Jagadeesh, et al., “Aerodynamic Drag Reduction by Heat Addition into the Shock Layer for a Large Angle Blunt Cone in Hypersonic Flow,” Phys. Fluids 20 (2008).
    doi 10.1063/1.2944982
  11. V. A. Lashkov, A. G. Karpenko, R. S. Khoronzhuk, and I. Ch. Mashek, “Effect of Mach Number on the Efficiency of Microwave Energy Deposition in Supersonic Flow,” Phys. Plasmas 23 (2016).
    doi 10.1063/1.4949524
  12. V. E. Borisov, A. E. Lutsky, A. V. Severin, and Ya. V. Khankhasaeva, Active Impact on the Flow around Hypersonic Flying Vehicles , Preprint No. 137 (Keldysh Institute of Applied Mathematics, Moscow, 2016).
  13. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, A. G. Karpenko, and I. V. Teterina, Acceleration of Gasdynamic Calculations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].
  14. M. W. Chase, J. L. Curnutt, R. A. McDonald, and A. N. Syverud, “JANAF Thermochemical Tables,” J. Phys. Chem. Ref. Data 7 (3), 793-940 (1978).
  15. V. P. Glushko (Ed.), Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978) [in Russian].
  16. A. S. Predvoditelev, E. V. Stupochenko, E. V. Samuilov, I. P. Stakhanov, A. S. Pleshanov, and I. B. Rozhdestvenskii, Tables of Thermodynamic Functions of Air for the Temperature Range 6000-12000° K and Pressure Range 0.001-1000 atm (Izd. Akad. Nauk SSSR, Moscow, 1957; Infosearch, London, 1958).
  17. A. S. Predvoditelev, E. V. Stupochenko, A. S. Pleshanov, et al., Tables of Thermodynamic Functions of Air for the Temperature Range 12000-20000° K and Pressure Range 0.001-1000 atm (Izd. Akad. Nauk SSSR, Moscow, 1959) [in Russian].
  18. A. S. Predvoditelev, E. V. Stupochenko, E. V. Samuilov, et al., Tables of Thermodynamic Functions of Air for the Temperature Range 200-6000° K and Pressure Range 0.00001-100 atm (Izd. Akad. Nauk SSSR, Moscow, 1962) [in Russian].
  19. V. A. Levin, V. G. Gromov, and N. E. Afonina, “Numerical Analysis of the Effect of Local Energy Supply on the Aerodynamic Drag and Heat Transfer of a Spherically Blunted Body in a Supersonic Air Flow,” Zh. Prikl. Mekh. Tekh. Fiz. 41 (5), 171-179 (2000) [J. Appl. Mech. Tech. Phys. 41 (5), 915-922 (2000)].
  20. A. N. Kraiko, “Analytic Representation of Thermodynamic Functions of Air,” Inzh. Zh. 4 (3), 548-550 (1964).
  21. A. N. Kraiko and V. E. Makarov, “Explicit Analytic Formulas Defining the Equilibrium Composition and Thermodynamic Functions of Air for Temperatures from 200 to 20000 K,” Teplofiz. Vys. Temp. 34 (2), 208-219 (1996) [High Temp. 34 (2), 202-213 (1996)].
  22. N. A. Brykov, K. N. Volkov, V. N. Emelyanov, and I. V. Teterina, “Flows of Ideal and Real Gases in Channels of Variable Cross Section with Unsteady Localized Energy Supply,” Vychisl. Metody Programm. 18, 20-40 (2017).
  23. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 1999).
  24. V. V. Rusanov, “The Calculation of the Interaction of Non-Stationary Shock Waves with Barriers,” Zh. Vychisl. Mat. Mat. Fiz. 1 (2), 267-279 (1961) [USSR Comput. Math. Math. Phys. 1 (2), 304-320 (1962)].
  25. T. J. Barth and D. C. Jespersen, “The Design and Application of Upwind Schemes on Unstructured Meshes,” AIAA Paper No. 89-0366 (1989).
  26. V. N. Emelyanov, A. G. Karpenko, A. S. Kozelkov, et al., “Analysis of Impact of General-Purpose Graphics Processor Units in Supersonic Flow Modeling,” Acta Astronaut. 135, 198-207 (2017).
  27. V. Emelyanov, A. Karpenko, and K. Volkov, “Development and Acceleration of Unstructured Mesh-Based CFD Solver,” Progress in Flight Physics 9, 387-408 (2017).
  28. R. K. Lobb, “Experimental Measurement of Shock Detachment Distance on Spheres Fired in Air at Hypervelocities,” in The High Temperature Aspects of Hypersonic Flow (Pergamon, Oxford, 1964), pp. 519-527.
  29. S. V. Zhluktov, G. D. Smekhov, and G. A. Tirskii, “Rotation-Vibration-Dissociation Interaction in a Multicomponent Nonequilibrium Viscous Shock Layer,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 166-180 (1994) [Fluid Dyn. 29 (6), 876-887 (1994)].
  30. T. J. McIntyre, A. I. Bishop, H. Rubinsztein-Dunlop, and P. A. Gnoffo, “Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder,” AIAA J. 41 (11), 2157-2161 (2003).
  31. L. D. Huebner, K. E. Rock, E. G. Ruf, et al., “Hyper-X Flight Engine Ground Testing for Flight Risk Reduction,” J. Spacecr. Rockets 38 (6), 844-852 (2001).
  32. D. E. Reubush, L. T. Nguyen, and V. L. Rausch, “Review of X-43A Return to Flight Activities and Current Status,” AIAA Paper No. 2003-7085 (2003).
  33. M. Mirmirani, C. Wu, A. Clark, et al., “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example,” in Proc. Workshop on Modeling and Control of Complex Systems, Ayia Napa, Cyprus, June 30-July 1, 2005 , 15 pp.