Применение NVidia CUDA для ускорения обработки сейсмических данных при помощи разложения по волновым пакетам
Авторы
-
В.В. Никитин
-
А.А. Дучков
-
Ф. Андерссон
Ключевые слова:
гауссовы волновые пакеты
преобразование Фурье
CUDA
Аннотация
Сейсмические данные характеризуются своей нерегулярностью, многомерностью и большим объемом. В настоящей статье рассматривается разложение данных по одному из наиболее оптимальных базисов — гауссовым волновым пакетам. На базе графических процессоров реализован и оптимизирован быстрый алгоритм прямого и обратного преобразования по трехмерным гауссовым волновым пакетам. Оптимизированная версия программы для графических ускорителей демонстрирует рост производительности в 2-6 раз по сравнению с 20-ядерным процессором. Проведено успешное тестирование алгоритмов на синтетических сейсмических данных: восстановление изображения по коэффициентам гауссовых волновых пакетов, сжатие данных, подавление шумов данных, интерполяция данных в случае пропущенных трасс.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- I. I. Gurvich and G. N. Boganik, Seismic Prospecting (Nedra, Moscow, 1980) [in Russian].
- F. Andersson, M. V. de Hoop, H. F. Smith, and G. Uhlmann, “A Multi-Scale Approach to Hyperbolic Evolution Equations with Limited Smoothness,” Commun. Part. Diff. Eq. 33 (6), 988-1017 (2008).
- A. A. Duchkov, F. Andersson, and M. V. de Hoop, “Discrete Almost-Symmetric Wave Packets and Multiscale Geometrical Representation of (Seismic) Waves,” IEEE Trans. Geosci. Remote Sens. 48 (9), 3408-3423 (2010).
- E. J. Candès and D. L. Donoho, “Continuous Curvelet Transform: I. Resolution of the Wavefront Set,” Appl. Comput. Harmon. Anal. 19 (2), 162-197 (2005).
- E. Candès, L. Demanet, D. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5 (3), 861-899 (2006).
- R. Neelamani, A. I. Baumstein, D. G. Gillard, et al., “Coherent and Random Noise Attenuation Using the Curvelet Transform,” The Leading Edge 27 (2), 240-248 (2008).
- A. A. Duchkov, M. V. de Hoop, and F. Andersson, “Migration Velocity Analysis Using Wave Packets - Geometric Approach,” SEG Technical Program Expanded Abstracts 2009.
doi 10.1190/1.3255704
- F. Andersson, M. Carlsson, and L. Tenorio, “On the Representation of Functions with Gaussian Wave Packets,” J. Fourier Anal. Appl. 18 (1), 146-181 (2012).
- G. Beylkin, “On Applications of Unequally Spaced Fast Fourier Transform,” in Mathematical Geophysics Summer School (Stanford Univ., Stanford, 1998).
- A. Dutt and V. Rokhlin, “Fast Fourier Transforms for Nonequispaced Data,” SIAM J. Sci. Comput. 14 (6), 1368-1393 (1993).
- A. A. Duchkov, F. Andersson, and R. Ojala, “Prestack Shot-Gather Depth Migration by a Rigid Flow of Gaussian Wave Packets,” Stud. Geophys. Geod. 56 (1), 83-106 (2012).
- B. M. Glinskii, V. N. Martynov, and A. F. Sapetina, “Technology of Supercomputer Simulation of Seismic Wave Fields in Complicated Media,” Vestn. South Ural State Univ. Ser. Vychisl. Mat. Inf. 4 4, 101-116 (2015).
- A. V. Trachenko and A. S. Prokopenko, “Solution of Large Three-Dimensional Problems of Seismicity in Layered Media on a Multi-GPU System Using CAE Fidesys,” Vestn. Lobachevskii Univ. Nizhni Novgorod, No. 4-2, 541-542 (2011).
- M. A. Gorodnichev, A. A. Duchkiv, and V. G. Sarychev, “Efficient GPU-Implementation of Coherent Stacking with CUDA,” in Proc. Int. Conf. on Parallel Computational Technologies, Arkhangelsk, Russia,March 28-April 1, 2016 (South Ural State Univ., Chelyabinsk, 2016), p. 118-130.
- E. A. Kurin and M. S. Denisov, “Application of High-Performance Computing to Seismic Multiple Attenuation,” Tekhnol. Seismorazved., No. 4, 35-40 (2011).
- V. V. Nikitin, F. Andersson, M. Carlsson, and A. A. Duchkov, “Fast Hyperbolic Radon Transform Represented as Convolutions in Log-polar Coordinates,” Comput. Geosci. 105, 21-33 (2017).
- D. R. Brillinger, Time Series. Data Analysis and Theory (Holt, Rinehart and Winston, New York, 1975; Mir, Moscow, 1980).
- J. A. Fessler and B. P. Sutton, “Nonuniform Fast Fourier Transforms Using Min-Max Interpolation,” IEEE Trans. Signal Process. 51 (2), 560-574 (2003).
- L. Greengard and J.-Y. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46 (3), 443-454 (2004).
- V. I. Lebedev, “Quadratures on a Sphere,” Zh. Vychisl. Mat. Mat. Fiz. 16 (2), 293-306 (1976) [USSR Comput. Math. Math. Phys. 16 (2), 10-24 (1976)].
- X. Chen, Y. Qiu, and H. Yi, “Implementation and Performance of Image Filtering on GPU,” in Proc. Fourth Int. Conf. on Intelligent Control and Information Processing, Beijing, China, June 9-11, 2013 (IEEE Press, New York, 2013), pp. 514-517.
- O. Fialka and M. Cadik, “FFT and Convolution Performance in Image Filtering on GPU,” in Proc. Tenth Int. Conf. on Information Visualization, London, England, July 5-7, 2006 (IEEE Press, New York, 2006), pp. 609-614.
- C. Sigg and M. Hadwiger, “Fast Third-Order Texture Filtering,” in GPU Gems (Addison-Wesley, Reading, 2005), Vol. 2, pp. 313-329.
- N. Zhang, Y.-S. Chen, and J. L. Wang, “Image Parallel Processing Based on GPU,” in Proc. 2nd Int. Conf. on Advanced Computer Control, Shenyang, China, March 27-29, 2010 (IEEE Press, New York, 2010), Vol. 3, 367-370.
- J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series,” Math. Comput. 19 (90), 297-301 (1965).
- L. Bluestein, “A Linear Filtering Approach to the Computation of Discrete Fourier Transform,” IEEE Trans. Audio and Electroacoust. 18 (4), 451-455 (1970).
- D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach (Morgan Kaufman, Boston, 2016).
- A. V. Boreskov and A. A. Kharlamov, The Basics of Working with CUDA Technology (Litres, Moscow, 2015) [in Russian].
- F. Andersson, “Fast Inversion of the Radon Transform Using Log-polar Coordinates and Partial Back-Projections,” SIAM J. Appl. Math. 65 (3), 818-837 (2005).
- F. Andersson, M. Carlsson, and V. V. Nikitin, “Fast Algorithms and Efficient GPU Implementations for the Radon Transform and the Back-Projection Operator Represented as Convolution Operators,” SIAM J. Imaging Sci., 9 (2), 637-664 (2016).