DOI: https://doi.org/10.26089/NumMet.v18r321

Анализ и оптимизация явных разностных схем высоких порядков для реализации этапа адвекции метода решеточных уравнений Больцмана

Авторы

  • Г.В. Кривовичев
  • Е.С. Марнопольская

Ключевые слова:

метод решеточных уравнений Больцмана
метод расщепления
устойчивость
дисперсия
диссипация

Аннотация

Статья посвящена анализу и оптимизации явных разностных схем для решения уравнений переноса, возникающих на этапе адвекции метода расщепления по физическим процессам. Метод может применяться как для решеточных уравнений Больцмана, так и при решении кинетических уравнений общего вида. Рассматриваются схемы второго-четвертого порядков аппроксимации. Для уменьшения эффектов численных диссипации и дисперсии используются схемы с параметром. С использованием метода фон Неймана и полиномиальной аппроксимации границ областей устойчивости получены условия устойчивости схем в виде неравенств на значения параметра Куранта. Оптимальные значения параметра для регулирования диссипативных и дисперсионных эффектов предлагается находить посредством решения задач минимизации функций максимума. Схемы с оптимальными значениями параметра применяются при решении тестовых задач — для одномерного и двумерного уравнений переноса, а также при применении метода расщепления к решению задачи о течении в каверне с подвижной крышкой.


Загрузки

Опубликован

2017-06-26

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

Г.В. Кривовичев

Санкт-Петербургский государственный университет
Университетская набережная 7–9, 199034, Санкт-Петербург
• доцент

Е.С. Марнопольская

Санкт-Петербургский государственный университет
Университетская набережная 7–9, 199034, Санкт-Петербург
• студент


Библиографические ссылки

  1. N. E. Grachev, A. V. Dmitriev, and D. S. Senin, “Simulation of Gas Dynamics with the Lattice Boltzmann Method,” Vychisl. Metody Programm. 12, 227-231 (2011).
  2. A. M. Zakharov, D. S. Senin, and E. A. Grachev, “Flow Simulation by the Lattice Boltzmann Method with Multiple-Relaxation Times,” Vychisl. Metody Programm. 15, 644-657 (2014).
  3. N. M. Evstigneev and N. A. Magnitskii, “Nonlinear Dynamics in the Initial-Boundary Value Problem on the Fluid Flow from a Ledge for the Hydrodynamic Approximation to the Boltzmann Equations,” Differ. Uravn. 46 (12), 1794-1798 (2010) [Differ. Equ. 46 (12), 1794-1798 (2010)].
  4. N. A. Vladimirova, A. I. Prostomolotov, and N. A. Verezub, “Computer Simulation of Aerohydrodynamics Problems on the Base of Numerical Solution of Kinetic Equation by Lattice Boltzmann Method in the XFlow Software Package,” Fiz. Khim. Kinetika Gaz. Dinamika 16 (1), 1-14 (2015).
  5. D. A. Bikulov, D. S. Senin, D. S. Demin, et al., “Implementation of the Lattice Boltzmann Method on GPU Clusters,” Vychisl. Metody Programm. 13, 13-19 (2012).
  6. D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
  7. D. A. Bikulov, “An Efficient Implementation of the Lattice Boltzmann Method for Hybrid Supercomputers,” Vychisl. Metody Programm. 16, 205-214 (2015).
  8. A. L. Kupershtokh, “Three-Dimensional Simulations of Two-Phase Liquid-Vapor Systems on GPU Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 13, 130-138 (2012).
  9. A. L. Kupershtokh, “Three-Dimensional LBE Simulations on Hybrid GPU-Clusters for the Decay of a Binary Mixture of Liquid Dielectrics with a Solute Gas to a System of Gas-Vapor Channels,” Vychisl. Metody Programm. 13, 384-390 (2012).
  10. A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of Thermal Flows in a Medium with Phase Transitions Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 15 (2), 317-328 (2014).
  11. X. He and L.-S. Luo, “A Priori Derivation of the Lattice Boltzmann Equation,” Phys. Rev. E 55 (6), R6333-R6336 (1997).
  12. G. V. Krivovichev, “Application of the Integro-Interpolation Method to the Construction of Single-Step Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 13, 19-27 (2012).
  13. G. V. Krivovichev and E. A. Prokhorova, “Approximation Viscosity of One-Parameter Families of Lattice Boltzmann Equations,” Vychisl. Metody Programm. 18, 41-52 (2017).
  14. P. R. Rao and L. A. Schaefer, “Numerical Stability of Explicit Off-Lattice Boltzmann Schemes: A Comparative Study,” J. Comput. Phys. 285, 251-264 (2015).
  15. G. V. Krivovichev, “A Lattice Boltzmann Scheme for Computing on Unstructured Meshes,” Vychisl. Metody Programm. 14, 524-532 (2013).
  16. V. Sofonea and R. F. Sekerka, “Viscosity of Finite Difference Lattice Boltzmann Models,” J. Comput. Phys. 184 (2), 422-434 (2003).
  17. V. V. Aristov and F. G. Cheremisin, “The Conservative Splitting Method for Solving Boltzmann’s Equation,” Zh. Vychisl. Mat. Mat. Fiz. 20 (1), 191-207 (1980) [USSR Comput. Math. Math. Phys. 20 (1), 208-225 (1980)].
  18. G. Dimarco and L. Pareschi, “Numerical Methods for Kinetic Equations,” Acta Numerica 23, 369-520 (2014).
  19. V. V. Aristov and S. A. Zabelok, “A Deterministic Method for Solving the Boltzmann Equation with Parallel Computations,” Zh. Vychisl. Mat. Mat. Fiz. 42 (3), 425-437 (2002) [Comput. Math. Math. Phys. 42 (3), 406-418 (2002)].
  20. S. V. Bogomolov, “Accuracy Increasing of the Splitting Method for Boltzmann Equation,” Mat. Model. 11 (10), 100-105 (1999).
  21. G. Dimarco and R. Loubere, “Towards an Ultra Efficient Kinetic Scheme. Part I: Basics on the BGK Equation,” J. Comput. Phys. 255, 680-698 (2013).
  22. S. V. Bogomolov, “Convergence of the Total-Approximation Method for the Boltzmann Equation,” Zh. Vychisl. Mat. Mat. Fiz. 28 (1), 119-126 (1988) [USSR Comput. Math. Math. Phys. 28 (1), 79-84 (1988)].
  23. T. Ohwada, “Higher Order Approximation Methods for the Boltzmann Equation,” J. Comput. Phys. 139 (1), 1-14 (1998).
  24. Yu. A. Anikin, O. I. Dodulad, Yu. Yu. Kloss, et al., “Development of Applied Software for Analysis of Gas Flows in Vacuum Devices,” Vacuum 86 (11), 1770-1777 (2012).
  25. Yu. A. Anikin, O. I. Dodulad, Yu. Yu. Kloss, and F. G. Tcheremissine, “Method of Calculating the Collision Integral and Solution of the Boltzmann Kinetic Equation for Simple Gases, Gas Mixtures and Gases with Rotational Degrees of Freedom,” Int. J. Comput. Math. 92 (9), 1775-1789 (2015).
  26. Yu. Yu. Kloss, P. V. Shuvalov, and F. G. Tcheremissine, “Solving Boltzmann Equation on GPU,” Procedia Comput. Sci. 1 (1), 1083-1091 (2010).
  27. P. J. Dellar, “An Interpretation and Derivation of the Lattice Boltzmann Method Using Strang Splitting,” Comput. Math. Appl. 65 (2), 129-141 (2013).
  28. U. D. Schiller, “A Unified Operator Splitting Approach for Multi-Scale Fluid-Particle Coupling in the Lattice Boltzmann Method,” Comput. Phys. Commun. 185 (10), 2586-2597 (2014).
  29. V. V. Aristov, “The Solution of the Boltzmann Equation at Small Knudsen Numbers,” Zh. Vychisl. Mat. Mat. Fiz. 44 (6), 1127-1140 (2004) [Comput. Math. Math. Phys. 44 (6), 1069-1081 (2004)].
  30. G. V. Krivovichev and E. S. Marnopolskaya, “Study of Properties of a Finite-Difference Scheme for the Advection Stage Implementation in the Lattice Boltzmann Method, Vychisl. Metody Programm. 17, 212-223 (2016).
  31. T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi Mir, Moscow, 2007) [in Russian].
  32. N. N. Kalitkin, Numerical Methods (BKhV Petersburg, St. Petersburg, 2011) [in Russian].
  33. R. P. Fedorenko, Introduction to Computational Physics (Intellekt, Dolgoprudnyi, 2008) [in Russian].
  34. U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys. 48, 387-411 (1982).
  35. Q. Zou and X. He, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids 9 (6), 1591-1598 (1997).
  36. E. Erturk, “Discussions on Driven Cavity Flow,” Int. J. Numer. Methods Fluids 60 (3), 275-294 (2009).