DOI: https://doi.org/10.26089/NumMet.v18r317

Численное моделирование сигнала ядерного магнитного резонанса в насыщенных пористых среда с учетом движения фаз

Авторы

  • К.Л. Клименок
  • А.Ю. Демьянов

Ключевые слова:

численное моделирование
ядерный магнитный резонанс
ядерная магнитная релаксация
потоковый пропагатор
перенос пассивной примеси

Аннотация

Представлена методика моделирования ядерного магнитного резонанса (ЯМР), позволяющая проводить расчеты для многокомпонентных многофазно насыщенных пористых сред с учетом движения всех фаз. Приведены результаты применения этого метода к цифровым моделям пористых сред, распределение фаз в которых определяется путем прямого гидродинамического моделирования методом функционала плотности. Обсуждаются результаты моделирования сигнала для различных последовательностей импульсов, повторяющих реальные ЯМР-эксперименты, и их использование для получения информации о транспорте флюида в пористой среде. Построены потоковые пропагаторы для различных течений. Проведено сравнение пропагатора со смещением, рассчитанным на основе модели переноса пассивной примеси.


Загрузки

Опубликован

2017-05-25

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

К.Л. Клименок

Московский физико-технический институт (МФТИ)
Институтский пер., 9, 141701, Долгопрудный
• аспирант

А.Ю. Демьянов

Московский научно-исследовательский центр «Шлюмберже»
Ленинградское ш., 16А строение 3, 125171, Москва
• старший научный сотрудник


Библиографические ссылки

  1. C. P. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1990), Vol. 1.
  2. A. Timur, “Pulsed Nuclear Magnetic Resonance Studies of Porosity, Movable Fluid, and Permeability of Sandstones,” J. Pet. Technol. 21 (6), 775-786 (1969).
  3. J. D. Loren, J. D. Robinson, “Relations between Pore Size Fluid and Matrix Properties, and NML Measurements,” Soc. Pet. Eng. J. 10 (3), 268-278 (1970).
  4. W. J. Looyestijn, “Wettability Index Determination from NMR Logs,” Soc. Petrophys. Well-Log Anal. 49 (2), 130-145 (2008).
  5. J. K854rger and W. Heink, “The Propagator Representation of Molecular Transport in Microporous Crystallites,” J. Magn. Reson. 51 (1), 1-7 (1983).
  6. L. Lebon, J. Leblond, J.-P. Hulin, et al., “Pulsed Field Gradient NMR Measurements of Probability Distribution of Displacement under Flow in Sphere Packings,” Magn. Reson. Imaging 14 (7-8), 989-991 (1996).
  7. K. J. Packer, S. Stapf, J. J. Tessier, and R. A. Damion, “The Characterisation of Fluid Transport in Porous Solids by Means of Pulsed Magnetic Field Gradient NMR,” Magn. Reson. Imaging 16 (5-6), 463-469 (1998).
  8. J. J. Tessier, K. J. Packer, J. F. Thovert, and P. M. Adler, “NMR Measurements and Numerical Simulation of Fluid Transport in Porous Solids,” AIChE J. 43 (7), 1653-1661 (1997).
  9. J. J. Tessier and K. J. Packer, “The Characterization of Multiphase Fluid Transport in a Porous Solid by Pulsed Gradient Stimulated Echo Nuclear Magnetic Resonance,” Phys. Fluids. 10 (1), 75-85 (1998).
  10. B. Bijeljic, A. Raeini, P. Mostaghimi, and M. J. Blunt, “Predictions of Non-Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore-Scale Images,” Phys. Rev. E 87 (2013).
    doi 10.1103/PhysRevE.87.013011
  11. N. K. Karadimitriou, V. Joekar-Niasar, M. Babaei, and C. A. Shore, “Critical Role of the Immobile Zone in Non-Fickian Two-Phase Transport: A New Paradigm,” Environ. Sci. Technol. 50 (8), 4384-4392 (2016).
  12. Z. Zhang, D. L. Johnson, and L. M. Schwartz, “Simulating the Time-Dependent Diffusion Coefficient in Mixed-Pore-Size Materials,” Phys. Rev. E 84 (2011).
    doi 10.1103/PhysRevE.84.031129
  13. J. Yang and E. S. Boek, “Pore Scale Simulation of Flow in Porous Media Using the Lattice-Boltzmann Method,” in Proc. SPE Annual Tech. Conf. and Exhibition, Denver, USA, October 30-November 2, 2011 (SPE Press, Richardson, 2011), pp. 1-13.
  14. J. Yang, J. Crawshaw, and E. S. Boek, “Quantitative Determination of Molecular Propagator Distributions for Solute Transport in Homogeneous and Heterogeneous Porous Media Using Lattice Boltzmann Simulations,” Water Resour. Res. 49 (12), 8531-8538 (2013).
  15. E. S. Boek and M. Venturoli, “Lattice-Boltzmann Studies of Fluid Flow in Porous Media with Realistic Rock Geometries,” Comput. Math. Appl. 59 (7), 2305-2314 (2010).
  16. B. Manz, L. F. Gladden, and P. B. Warren, “Flow and Dispersion in Porous Media: Lattice-Boltzmann and NMR Studies,” AIChE J. 45 (9), С. 1845-1854 (1999).
  17. M. Ferrari, J-P. Mérel, S. Leclerc, et al., “Study of Dispersion by NMR: Comparison between NMR Measurements and Stochastic Simulation,” Diffus. Fundam. 18 (11), 1-4 (2013).
  18. D. S. Grebenkov, “A Fast Random Walk Algorithm for Computing the Pulsed-Gradient Spin-Echo Signal in Multiscale Porous Media,” J. Magn. Reson. 208 (2), 243-255 (2011).
  19. R. A. Damion, K. J. Packer, K. S. Sorbie, and S. R. McDougall, “Pore-Scale Network Modelling of Flow Propagators Derived from Pulsed Magnetic Field Gradient Spin Echo NMR Measurements in Porous Media,” Chem. Eng. Sci. 55 (24), 5981-5998 (2000).
  20. W. Zhao, G. Picard, G. Leu, and P. M. Singer, “Characterization of Single-Phase Flow through Carbonate Rocks: Quantitative Comparison of NMR Flow Propagator Measurements with a Realistic Pore Network Model,” Transp. Porous Media 81 (2), 305-315 (2010).
  21. F. Mees, R. Swennen, M. van Geet, and P. Jacobs, “Applications of X-Ray Computed Tomography in the Geosciences,” in Applications of X-Ray Computed Tomography in the Geosciences (Geological Society Press, London, 2003), Vol. 215, pp. 1-6.
  22. A. Yu. Dem’yanov, O. Yu. Dinariev, and N. V. Evseev, Foundations of the Density Functional Method in Hydrodynamics (Fizmatlit, Moscow, 2009) [in Russian].
  23. H. C. Torrey, “Bloch Equations with Diffusion Terms,” Phys. Rev. 104 (3), 563-565 (1956).
  24. K. R. Brownstein and C. E. Tarr, “Importance of Classical Diffusion in NMR Studies of Water in Biological Cells,” Phys. Rev. A 19 (6), 2446-2453 (1979).
  25. K. R. Brownstein and C. E. Tarr, “Spin-Lattice Relaxation in a System Governed by Diffusion,” J. Magn. Reson. 26 (1), 17-24 (1977).
  26. R. W. MacCormack, “A Numerical Method for Solving the Equations of Compressible Viscous Flow,” AIAA J. 20 (9), 1275-1281 (1982).
  27. S. V. Patankar, Numerical Heat Transfer and Fluid Flow: Computational Methods in Mechanics and Thermal Science (CRC Press, Boca Raton, 1980).
  28. E. L. Hahn, “Spin Echoes,” Phys. Rev. 80 (4), 580-594 (1950).
  29. E. O. Stejskal and J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42 (1), 288-292 (1965).
  30. R. I. Nigmatulin, Foundations of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].