Численное моделирование сигнала ядерного магнитного резонанса в насыщенных пористых среда с учетом движения фаз
Авторы
-
К.Л. Клименок
-
А.Ю. Демьянов
Ключевые слова:
численное моделирование
ядерный магнитный резонанс
ядерная магнитная релаксация
потоковый пропагатор
перенос пассивной примеси
Аннотация
Представлена методика моделирования ядерного магнитного резонанса (ЯМР), позволяющая проводить расчеты для многокомпонентных многофазно насыщенных пористых сред с учетом движения всех фаз. Приведены результаты применения этого метода к цифровым моделям пористых сред, распределение фаз в которых определяется путем прямого гидродинамического моделирования методом функционала плотности. Обсуждаются результаты моделирования сигнала для различных последовательностей импульсов, повторяющих реальные ЯМР-эксперименты, и их использование для получения информации о транспорте флюида в пористой среде. Построены потоковые пропагаторы для различных течений. Проведено сравнение пропагатора со смещением, рассчитанным на основе модели переноса пассивной примеси.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- C. P. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1990), Vol. 1.
- A. Timur, “Pulsed Nuclear Magnetic Resonance Studies of Porosity, Movable Fluid, and Permeability of Sandstones,” J. Pet. Technol. 21 (6), 775-786 (1969).
- J. D. Loren, J. D. Robinson, “Relations between Pore Size Fluid and Matrix Properties, and NML Measurements,” Soc. Pet. Eng. J. 10 (3), 268-278 (1970).
- W. J. Looyestijn, “Wettability Index Determination from NMR Logs,” Soc. Petrophys. Well-Log Anal. 49 (2), 130-145 (2008).
- J. K854rger and W. Heink, “The Propagator Representation of Molecular Transport in Microporous Crystallites,” J. Magn. Reson. 51 (1), 1-7 (1983).
- L. Lebon, J. Leblond, J.-P. Hulin, et al., “Pulsed Field Gradient NMR Measurements of Probability Distribution of Displacement under Flow in Sphere Packings,” Magn. Reson. Imaging 14 (7-8), 989-991 (1996).
- K. J. Packer, S. Stapf, J. J. Tessier, and R. A. Damion, “The Characterisation of Fluid Transport in Porous Solids by Means of Pulsed Magnetic Field Gradient NMR,” Magn. Reson. Imaging 16 (5-6), 463-469 (1998).
- J. J. Tessier, K. J. Packer, J. F. Thovert, and P. M. Adler, “NMR Measurements and Numerical Simulation of Fluid Transport in Porous Solids,” AIChE J. 43 (7), 1653-1661 (1997).
- J. J. Tessier and K. J. Packer, “The Characterization of Multiphase Fluid Transport in a Porous Solid by Pulsed Gradient Stimulated Echo Nuclear Magnetic Resonance,” Phys. Fluids. 10 (1), 75-85 (1998).
- B. Bijeljic, A. Raeini, P. Mostaghimi, and M. J. Blunt, “Predictions of Non-Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore-Scale Images,” Phys. Rev. E 87 (2013).
doi 10.1103/PhysRevE.87.013011
- N. K. Karadimitriou, V. Joekar-Niasar, M. Babaei, and C. A. Shore, “Critical Role of the Immobile Zone in Non-Fickian Two-Phase Transport: A New Paradigm,” Environ. Sci. Technol. 50 (8), 4384-4392 (2016).
- Z. Zhang, D. L. Johnson, and L. M. Schwartz, “Simulating the Time-Dependent Diffusion Coefficient in Mixed-Pore-Size Materials,” Phys. Rev. E 84 (2011).
doi 10.1103/PhysRevE.84.031129
- J. Yang and E. S. Boek, “Pore Scale Simulation of Flow in Porous Media Using the Lattice-Boltzmann Method,” in Proc. SPE Annual Tech. Conf. and Exhibition, Denver, USA, October 30-November 2, 2011 (SPE Press, Richardson, 2011), pp. 1-13.
- J. Yang, J. Crawshaw, and E. S. Boek, “Quantitative Determination of Molecular Propagator Distributions for Solute Transport in Homogeneous and Heterogeneous Porous Media Using Lattice Boltzmann Simulations,” Water Resour. Res. 49 (12), 8531-8538 (2013).
- E. S. Boek and M. Venturoli, “Lattice-Boltzmann Studies of Fluid Flow in Porous Media with Realistic Rock Geometries,” Comput. Math. Appl. 59 (7), 2305-2314 (2010).
- B. Manz, L. F. Gladden, and P. B. Warren, “Flow and Dispersion in Porous Media: Lattice-Boltzmann and NMR Studies,” AIChE J. 45 (9), С. 1845-1854 (1999).
- M. Ferrari, J-P. Mérel, S. Leclerc, et al., “Study of Dispersion by NMR: Comparison between NMR Measurements and Stochastic Simulation,” Diffus. Fundam. 18 (11), 1-4 (2013).
- D. S. Grebenkov, “A Fast Random Walk Algorithm for Computing the Pulsed-Gradient Spin-Echo Signal in Multiscale Porous Media,” J. Magn. Reson. 208 (2), 243-255 (2011).
- R. A. Damion, K. J. Packer, K. S. Sorbie, and S. R. McDougall, “Pore-Scale Network Modelling of Flow Propagators Derived from Pulsed Magnetic Field Gradient Spin Echo NMR Measurements in Porous Media,” Chem. Eng. Sci. 55 (24), 5981-5998 (2000).
- W. Zhao, G. Picard, G. Leu, and P. M. Singer, “Characterization of Single-Phase Flow through Carbonate Rocks: Quantitative Comparison of NMR Flow Propagator Measurements with a Realistic Pore Network Model,” Transp. Porous Media 81 (2), 305-315 (2010).
- F. Mees, R. Swennen, M. van Geet, and P. Jacobs, “Applications of X-Ray Computed Tomography in the Geosciences,” in Applications of X-Ray Computed Tomography in the Geosciences (Geological Society Press, London, 2003), Vol. 215, pp. 1-6.
- A. Yu. Dem’yanov, O. Yu. Dinariev, and N. V. Evseev, Foundations of the Density Functional Method in Hydrodynamics (Fizmatlit, Moscow, 2009) [in Russian].
- H. C. Torrey, “Bloch Equations with Diffusion Terms,” Phys. Rev. 104 (3), 563-565 (1956).
- K. R. Brownstein and C. E. Tarr, “Importance of Classical Diffusion in NMR Studies of Water in Biological Cells,” Phys. Rev. A 19 (6), 2446-2453 (1979).
- K. R. Brownstein and C. E. Tarr, “Spin-Lattice Relaxation in a System Governed by Diffusion,” J. Magn. Reson. 26 (1), 17-24 (1977).
- R. W. MacCormack, “A Numerical Method for Solving the Equations of Compressible Viscous Flow,” AIAA J. 20 (9), 1275-1281 (1982).
- S. V. Patankar, Numerical Heat Transfer and Fluid Flow: Computational Methods in Mechanics and Thermal Science (CRC Press, Boca Raton, 1980).
- E. L. Hahn, “Spin Echoes,” Phys. Rev. 80 (4), 580-594 (1950).
- E. O. Stejskal and J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42 (1), 288-292 (1965).
- R. I. Nigmatulin, Foundations of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].