Анализ производительности гидродинамических расчетов на GPU- и CPU-кластерах
Авторы
-
А.В. Сентябов
-
А.А. Гаврилов
-
М.А. Кривов
-
А.А. Дектерев
-
М.Н. Притула
Ключевые слова:
GPGPU
численное моделирование
вычислительная гидродинамика
SIMPLE
MPI
CUDA
Аннотация
Рассматривается ускорение параллельных гидродинамических расчетов на кластерах с CPU- и GPU-узлами. Для тестирования используется собственный CFD-код SigmaFlow, портированный для расчетов на графических ускорителях с помощью технологии CUDA. Алгоритм моделирования течения несжимаемой жидкости основан на SIMPLE-подобной процедуре и дискретизации с помощью метода контрольного объема на неструктурированных сетках из гексаэдральных ячеек. Сравнение скорости расчета показывает высокую производительность графических ускорителей нового поколения в GPGPU-расчетах.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- Supercomputing News, Parallel.ru.
http://parallel.ru/news/top500_47edition.html . Cited August 30, 2016.
- Top 500.
https://www.top500.org/lists/2016/06/. Cited August 30, 2016.
- Supercomputer Center of Moscow University.
http://parallel.ru/cluster . Cited August 30, 2016.
- D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
- A. N. Maslii and E. I. Madirov, “Performance Comparison of Quantum-Chemical Calculations Using GPU,” Vestn. Kazan Tekhnol. Univ. 16 (23), 12-18 (2013).
- A. A. Yunusov, I. M. Gubaydullin, and M. R. Fayzullin, “Analysis of Algorithms for Solving Chemical Kinetics Problems Using GPGPU,” Zh. Srednevolzh. Matem. Obshchestva 12 (3), 146-152 (2010).
- A. V. Gorobets, S. A. Sukov, A. O. Zheleznyakov, et al., “Application of GPU for Hybrid Two-Level Parallelization MPI+OpenMP on Heterogeneous Computing Systems,” in Proc. Int. Conf. on Parallel Computational Technologies, Moscow, Russia, March 28-April 1, 2011 (South Ural State Univ., Chelyabinsk, 2011), pp. 452-460.
- K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Methods for Accelerating Gasdynamic Calculations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].
- A. A. Gavrilov, A. V. Minakov, A. A. Dekterev, and V. Ya. Rudyak, “A Numerical Algorithm for Modeling Laminar Flows in an Annular Channel with Eccentricity,” Sib. Zh. Ind. Mat. 13 (4), 3-14 (2010) [J. Appl. Ind. Math. 5 (4), 559-568 (2011)].
- A. A. Gavrilov, A. V. Minakov, A. A. Dekterev, and V. Ya. Rudyak, “Numerical Algorithm for Fully Developed Laminar Flow of a Non-Newtonian Fluid through an Eccentric Annulus,” Vychisl. Tekhnol. 17 (1), 44-56 (2012).
- D. J. Mavriplis, “Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes,” AIAA Paper 2003-3986 (2003).
- J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer, Heidelberg, 2002).
- F. Moukalled and M. Darwish, “A Unified Formulation of the Segregated Class of Algorithms for Fluid Flow at All Speeds,” Numer. Heat Transfer. Part B. 37 (2), 227-246 (2000).
- I. A. Belov, S. A. Isaev, and V. A. Korobkov, Problems and Methods of Calculation of Separating Flows of Incompressible Fluids (Sudostroenie, Leningrad, 1989) [in Russian].
- S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980; Energoatomizdat, 1984).
- C. M. Rhie and W. L. Chow, “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation,” AIAA J. 21 (11), 1525-1532 (1983).
- B. P. Leonard, “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,” Comput. Methods Appl. Mech. Eng. 19 (1), 59-98 (1979).
- R. Barrett, M. W. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia, 1994).
- A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Birkh854user, Basel, 1989).
- G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,” SIAM J. Sci. Comput. 20 (1), 359-392 (1998).
- A. A. Gavrilov, M. A. Krivov, S. A. Grizan, and A. A. Dekterev, “GPU Version of CFD Software SigmaFlow: Porting and Optimization Using TTG Apptimizer Toolkit,” in Proc. Int. Conf. on Parallel Computational Technologies, Chelyabinsk, Russia, April 1-5, 2013 (South Ural State Univ., Chelyabinsk, 2013), pp. 106-115.
- Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., “The Lomonosov Supercomputer in Practice,” Otkrytye Sistemy, No. 7, 36-39 (2012).
- V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, “’Lomonosov’: Supercomputing at Moscow State University,” in Contemporary High Performance Computing: From Petascale toward Exascale (CRC Press, Boca Raton, 2013), pp. 283-307.