Математическое моделирование обратных задач многоточечного формообразования в режиме ползучести с помощью реконфигурируемого устройства
Авторы
-
К.С. Бормотин
-
С.В. Белых
-
Аунг. Вин
Ключевые слова:
обратные задачи формообразования
контактные условия
вариационные уравнения
сходимость
метод конечных элементов
итерационный метод
многоточечная формовка
Аннотация
Математическая формулировка обратных задач формообразования в режиме ползучести на реконфигурируемой штыревой машине основана на построении функционалов прямых и обратных экстремальных квазистатических задач формообразования деталей с учетом контактных условий с оснасткой. Построен итерационный метод расчета перемещений стержней матриц формблока, обеспечивающих заданную остаточную кривизну панели. Численные решения задач достигаются методом конечных элементов в системе MSC.Marc. Показана сходимость метода на примере формообразования панели.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- O. V. Sosnin, B. V. Gorev, and I. V. Lyubashevskaya, “High-Temperature Creep and Superplasticity of Materials,” Zh. Prikl. Mekh. Tekh. Fiz. 38 (2), 140-145 (1997) [J. Appl. Mech. Tech. Phys. 38 (2), 293-297 (1997)].
- B. V. Gorev, V. A. Panamarev, and V. N. Peretyat’ko, “Energy-Based Theory of Creep in the Pressure Treatment of Metals,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 6, 16-18 (2011) [Steel Transl. 41 (6), 461-463 (2011)].
- V. A. Panamarev, V. N. Peretyat’ko, and B. V. Gorev, “Kinetic Equations of Creep in Hot Metal under Continuous and Incremental Loading,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 12, 53-54 (2011).
- O. V. Sosnin, A. F. Nikitenko, and B. V. Gorev, “Justification of the Energy Variant of the Theory of Creep and Long-Term Strength of Metals,” Zh. Prikl. Mekh. Tekh. Fiz. 51 (4), 188-197 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 608-614 (2010)].
- I. A. Banshchikova, B. V. Gorev, and I. Yu. Tsvelodub, “Creep of Plates Made of Aluminum Alloys under Bending,” Zh. Prikl. Mekh. Tekh. Fiz. 48 (5), 156-159 (2007) [J. Appl. Mech. Tech. Phys. 48 (5), 751-754 (2007)].
- B. V. Gorev, “Bulky Parts Forming Technology from Sheet and Plates under Creep Conditions,” Tekhnol. Mashinostroeniya, No. 2, 11-17 (2008).
- B. D. Annin, A. I. Oleinikov, and K. S. Bormotin, “Modeling of Forming of Wing Panels of the SSJ-100 Aircraft,” Zh. Prikl. Mekh. Tekh. Fiz. 51 (4), 155-165 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 579-589 (2010)].
- F. C. Ribeiro, E. P. Marinho, D. J. Inforzato, et al., “Creep Age Forming: A Short Review of Fundaments and Applications,” J. Achiev. Mater. Manufact. Eng. 43 (1), 353-361 (2010).
- I. A. Banshchikova, B. V. Gorev, and I. V. Sukhorukov, “Two-Dimensional Problems of Beam Forming under Conditions of Creep,” Zh. Prikl. Mekh. Tekh. Fiz. 43 (3), 129-139 (2002) [J. Appl. Mech. Tech. Phys. 43 (3), 448-456 (2002)].
- I. Yu. Tsvelodub, A Stability Postulate and Its Applications in the Theory of Creep for Metallic Materials (Hydrodynamics Inst., Novosibirsk, 1991) [in Russian].
- K. S. Bormotin, “An Iterative Method for the Solution of Inverse Shaping Problems under Creep Conditions,” Vychisl. Metody Programm. 14, 141-148 (2013).
- K. S. Bormotin, “Iterative Method for Solving Geometrically Nonlinear Inverse Problems of Structural Element Shaping under Creep Conditions,” Zh. Vychisl. Mat. Mat. Fiz. 53 (12), 2091-2099 (2013) [Comput. Math. Math. Phys. 53 (12), 1908-1915 (2013)].
- I. D. Klopotov, I. V. Lyubashevskaya, G. A. Raevskaya, L. L. Rublevskii, and O. V. Sosnin, RF Patent No. 2 251 464, Byull. Izobret., No. 13 (2005).
- L. L. Rublevskii, O. V. Sosnin, B. V. Gorev, and M. I. Bondarenko, RF Patent No. 2 076 010, Byull. Izobret., No. 9 (1997).
- W. W. Wang, B. B. Jia, and J. B. Yu, “A New Flexible Sheet Metal Forming Method and Its Stamping Process,” in Proc. 14th IFToMM World Congress, Taipei, Taiwan, October 25-30, 2015 ,
doi 10.6567/IFToMM.14TH.WC.PS20.006
- D. Simon, L. Kern, J. Wagner, and G. Reinhart, “A Reconfigurable Tooling System for Producing Plastic Shields,” Procedia CIRP 17, 853-858 (2014).
- H. Lin, W. Min, C. Cailou, and J. Xiusheng, “FEM Analysis of Spring-backs in Age Forming of Aluminum Alloy Plates,” Chin. J. Aeronaut. 20 (6), 564-569 (2007).
- V. Păunoiu, E. Găvan, and A. Dimache, “Springback Analysis in Reconfigurable Multipoint Forming of Thick Plates,” The Annals of Dunarea de Jos University of Galati, Technologies in Machine Building, Fascicle V, ISSN 1221-4566, 47-54 (2012).
- K. S. Bormotin, “Numerical Modeling of a Problem Forming with Contact Conditions in a Plasticity and Creep Mode,” Naukovedenie, No. 1, 1-13 (2014).
- P. Wriggers, Computational Contact Mechanics (Springer, Heidelberg, 2006).
- S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].
- R. Hill, “On Uniqueness and Stability in the Theory of Finite Elastic Strain,” J. Mech. Phys. Solids 5 (4), 229-241 (1957).
- F. P. Vasil’ev, Methods of Optimization (Faktorial Press, Moscow, 2002) [in Russian].
- K.-J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, 1982).
- N.-H. Kim, Introduction to Nonlinear Finite Element Analysis (Springer, New York, 2015).
- Marc: Advanced Nonlinear Simulation Solution, MSC.Software Corporation.
http://www.mscsoftware.com/product/marc . Cited July 14, 2016.