Визуализация течений с сильными и слабыми газодинамическими разрывами в вычислительной газовой динамике
Авторы
-
П.В. Булат
-
К.Н. Волков
-
М.С. Яковчук
Ключевые слова:
научная визуализация
вычислительная газовая динамика
визуализация течений
ударная волна
шлирен
теневая картина
интерферограмма
Аннотация
Рассматриваются методы визуализации течений с газодинамическими разрывами, позволяющие проводить сравнение результатов численного моделирования с данными физического эксперимента. Дается обзор методов оптической визуализации течений сжимаемого газа (теневые картины, шлирен-изображения, интерферограммы). Приводятся примеры визуального представления решений ряда задач газовой динамики, связанных с расчетами течений, содержащих слабые и сильные газодинамические разрывы. Для повышения наглядности результирующего образа применяются топологические методы визуализации, позволяющие определить положение критических точек, линий отрыва и присоединения потока.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- K. N. Volkov, V. N. Emelyanov, I. V. Teterina, and M. S. Yakovchuk, “Methods and Concepts of Vortex Flow Visualization in the Problems of Computational Fluid Dynamics,” Vychisl. Metody Programm. 17, 81-100 (2016).
- K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, and I. V. Teterina, Difference Schemes in Gas Dynamics on Unstructured Grids (Fizmatlit, Moscow, 2014) [in Russian].
- E. V. Vorozhtsov, Classification of Discontinuities in Gas Flows as the Pattern Recognition Problem , Preprint No. 23-86 (Khristianovich Inst. Theor. Appl. Mech., Novosibirsk, 1986).
- A. Hadjadj and A. Kudryavtsev, “Computation and Flow Visualization in High-Speed Aerodynamics,” J. Turbul. 6 (16), 33-81 (2005).
- R. Samtaney and N. J. Zabusky, “Visualization, Feature Extraction and Quantification of Numerical Visualizations of High-Gradient Compressible Flows,” in Flow Visualization. Techniques and Examples (Imperial College Press, London, 2000), pp. 317-344.
- S. B. Bazarov, “Application of Digital Image Processing for the Visualization of Gas-Dynamic Processes,” in Application of Scientific Visualization in Applied Problems (Mosk. Gos. Univ., Moscow, 2000), pp. 39-42.
- S. Cui, Y. Wang, X. Qian, and Z. Deng, “Image Processing Techniques in Shockwave Detection and Modeling,” J. Signal Inform. Process. 4 (3B), 109-113 (2013).
- Z. Wu, Y. Xu, W. Wang, and R. Hu, “Review of Shock Wave Detection Method in CFD Post-Processing,” Chin. J. Aeronaut. 26 (3), 501-513 (2013).
- J. J. Quirk and S. Karni, “On the Dynamics of a Shock-Bubble Interaction,” J. Fluid Mech. 318, 129-163 (1996).
- M. Anyoji and M. Sun, “Computer Analysis of the Schlieren Optical Setup,” in Proc. 27th Int. Congress on High-Speed Photography and Photonics, Xi’an, China, September 17-22, 2006 (SPIE Press, Bellingham, 2007), Vol. 6279.
doi 10.1117/12.725101
- B. Atcheson, I. Ihrke, W. Heidrich, et al., “Time Resolved 3D Capture of Non-Stationary Gas Flows,” ACM Trans. Graph. 25 (5), 132-141 (2008).
- R. J. Schalkoff, Digital Image Processing and Computer Vision: An Introduction to Theory and Implementations (Wiley, New York, 1989).
- T. Kouchi, T. Hoshino, K. Sasaya, and G. Masuya, “Time-Space Trajectory of Unsteady Jet into Supersonic Crossflow Using High-Speed Framing Schlieren Images,” AIAA Paper (2009).
doi 10.2514/6.2009-7316
- D. Estruch, N. J. Lawson, D. G. MacManus, et al., “Measurement of Shock Wave Unsteadiness Using a High-Speed Schlieren System and Digital Image Processing,” Rev. Sci. Instrum. 79, 126108-1-126108-3 (2008).
doi 10.1063/1.3053361
- H. G. Pagendarm and B. Seitz, “An Algorithm for Detection and Visualization of Discontinuities in Scientific Data Fields Applied to Flow Data with Shock Waves,” in Scientific Visualization: Advanced Software Techniques (Ellis Horwood, New York, 1993), pp. 161-177.
- K.-L. Ma, J. V. Rosendale, and W. Vermeer, “3D Shock Wave Visualization on Unstructured Grids,” in Proc. Symp. on Volume Visualization, San Franсisco, USA, October 28-29, 1996 (IEEE Press, Piscataway, 1996), pp. 87-94.
- D. Lovely and R. Haimes, “Shock Detection from Computational Fluid Dynamics Results,” AIAA Paper (1999).
doi 10.2514/6.1999-3285
- M. Kanamori and K. Suzuki, “Shock Wave Detection in Two-Dimensional Flow Based on the Theory of Characteristics from CFD Data,” J. Comput. Phys. 230 (8), 3085-3092 (2011).
- K. W. Morton and M. A. Rudgyard, “Shock Recovery and the Cell Vertex Scheme for the Steady Euler Equations,” in Lecture Notes in Physics (Springer, Heidelberg, 2005), Vol. 323, pp. 424-428.
- R. Haimes and D. Darmofal, “Visualization in Computational Fluid Dynamics: A Case Study,” in Proc. 2nd IEEE Conf. on Visualization, San Diego, USA, October 22-25, 1991 (IEEE Press, Los Alamitos, 1991), pp. 392-397.
- S. B. Bazarov, “Image processing in CFD,” in Proc. 8th Int. Conf. on Computer Graphics and Visualization (GraphiCon’98), Moscow, Russia, September 7-11, 1998 (Mosk. Gos. Univ., Moscow, 1998), pp. 258-264.
- S. Osher and R. Fedkiw, The Level Set Method and Dynamic Implicit Surfaces (Springer, New York, 2002).
- K. N. Volkov, V. N. Emelyanov, and M. S. Yakovchuk, “Numerical Simulation of the Interaction of a Transverse Jet with a Supersonic Flow Using Different Turbulence Models,” Zh. Prikl. Mekh. Tekh. Fiz. 56 (5), 64-75 (2015) [J. Appl. Mech. Tech. Phys. 56 (5), 789-798 (2015)].
- P. V. Bulat and K. N. Volkov, “Simulation of Supersonic Flow in a Channel with a Step on Nonstructured Meshes with the Use of the WENO Scheme,” Inzh. Fiz. Zh. 88 (4), 848-855 (2015) [J. Eng. Phys. Thermophys. 88 (4), 877-884 (2015)].
- P. V. Bulat and K. N. Volkov, “Use of WENO Schemes for Simulation of the Reflected Shock Wave-Boundary Layer Interaction,” Inzh. Fiz. Zh. 88 (5), 1163-1170 (2015) [J. Eng. Phys. Thermophys. 88 (5), 1203-1209 (2015)].