Параллельная реализация многомасштабного подхода для расчета микротечений газа
Авторы
-
В.О. Подрыга
-
С.В. Поляков
Ключевые слова:
газовая динамика
молекулярная динамика
параллельные алгоритмы и программы
микроканалы
многомасштабные вычисления
суперкомпьютерное моделирование
Аннотация
Статья посвящена параллельной реализации многомасштабного подхода для расчета течений газов в микроканалах сложных технических систем. Многомасштабный подход сочетает решения уравнений квазигазодинамики (КГД) и молекулярной динамики (МД). Представлена параллельная реализация подхода, основанная на методах расщепления по физическим процессам и разделения областей. Реализация ориентирована на использование вычислительных систем с центральной и гибридной архитектурами. Разработанные параллельные алгоритмы обладают хорошей масштабируемостью. Полученные результаты подтвердили эффективность разработанного подхода. С его помощью методами МД были получены основные коэффициентные зависимости для КГД-системы, произведен расчет трехмерного течения.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, and V. M. Fomin, Cold Gas Dynamic Spraying: Theory and Practice (Fizmatlit, Moscow, 2010; Cambridge Int. Sci. Pub., Cambridge, 2011).
- D. Resnick, “Nanoimprint Lithography,” in Nanolithography. The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems (Woodhead Publ., Cambridge, 2014), pp. 315-347.
- V. O. Podryga, “Molecular Dynamics Method for Simulation of Thermodynamic Equilibrium,” Mat. Model. 22 (11), 39-48 (2010) [Math. Models Comput. Simul. 3 (3), 382-388 (2011)].
- V. O. Podryga and S. V. Polyakov, Molecular Dynamic Simulation of Thermodynamic Equilibrium Problem for Heated Nickel , Preprint No. 41 (Keldysh Inst. Appl. Math., Moscow, 2014).
- V. O. Podryga and S. V. Polyakov, “Molecular Dynamic Simulation of Thermodynamic Equilibrium Establishment in Nickel,” Mat. Model. 27 (3), 3-19 (2015) [Math. Models Comput. Simul. 7 (5), 456-466 (2015)].
- V. O. Podryga, “Determination of Real Gas Macroparameters by Molecular Dynamics,” Mat. Model. 27 (7), 80-90 (2015).
- V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer Molecular Modeling of Thermodynamic Equilibrium in Gas-Metal Microsystems,” Vychisl. Metody Programm. 16, 123-138 (2015).
- V. O. Podryga, S. V. Polyakov, and V. V. Zhakhovskii, “Atomistic Calculation of the Nitrogen Transitions in Thermodynamic Equilibrium over the Nickel Surface,” Mat. Model. 27 (7), 91-96 (2015).
- T. A. Kudryashova and S. V. Polyakov, “A Model of Supersonic Binary Gas Flow,” Mathematica Montisnigri 24, 120-127 (2012).
- T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Simulation of Gas Mixture Flows in Microchannels,” Vestn. Peoples’ Friendship Univ. Ser. Mat. Inf. Phys., No. 3, 154-163 (2014).
- Yu. N. Karamzin, T. A. Kudryashova, and S. V. Polyakov, “Supercomputer Simulation of Nonlinear Processes in Technical Microsystems,” in Proc. 10th Int. Conf. on Mesh Methods for Boundary-Value Problems and Applications, Kazan, Russia, September 24-29, 2014 (Kazan Federal Univ., Kazan, 2014), pp. 367-374.
- Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Multiscale Simulation of Nonlinear Processes in Technical Microsystems,” Mat. Model. 27 (7), 65-74 (2015).
- G. Ciccotti and W. G. Hoover (Eds.), Molecular-Dynamics Simulation of Statistical-Mechanical Systems (Elsevier, Amsterdam, 1986).
- J. M. Haile, Molecular Dynamics Simulations: Elementary Methods (Wiley, New York, 1992.)
- D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 2002).
- G. Sutmann, “Classical Molecular Dynamics,” in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, NIC Series (John von Neumann Inst. for Computing, Jülich, 2002), Vol. 10, pp. 211-254.
- M. P. Allen, “Introduction to Molecular Dynamics Simulation,” in Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes, NIC Series (John von Neumann Inst. for Computing, Jülich, 2004), Vol. 23, pp. 1-28.
- G. E. Norman and V. V. Stegailov, “Stochastic Theory of the Classical Molecular Dynamics Method,” Mat. Model. 24 (6), 3-44 (2012) [Math. Models Comput. Simul. 5 (4), 305-333 (2013)].
- T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Heidelberg, 2009).
- V. Garzó, A. Santos, and J. J. Brey, “A Kinetic Model for a Multicomponent Gas,” Phys. Fluids A. 1 (2), 380-383 (1989).
- T. G. Elizarova, A. A. Zlotnik, and B. N. Chetverushkin, “On Quasi-Gasdynamic and Quasi-Hydrodynamic Equations for Binary Gas Mixtures,” Dokl. Akad. Nauk 459 (4), 395-399 (2014) [Dokl. Math. 90 (3), 719-723 (2014)].
- G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).
- J. W. Buddenberg and C. R. Wilke, “Calculation of Gas Mixture Viscosities,” Ind. Eng. Chem. 41 (7), 1345-1347 (1949).
- C. R. Wilke, “A Viscosity Equation for Gas Mixtures,” J. Chem. Phys. 18 (4), 517-519 (1950).
- A. A. Dorofeev, Fundamentals of Theory of Heat Rocket Engines: Theory, Calculation, and Design (Bauman Tech. Univ., Moscow, 2014) [in Russian].
- S. Brunauer, Adsorption of Gases and Vapors (Princeton Univ. Press, Princeton, 1945; Inostrannaya Literatura, Moscow, 1948).
- G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1991), Part 1 [in Russian].
- G. Mie, “Zur Kinetischen Theorie der Einatomigen Körper,” Ann. Phys. 11 (8), 657-697 (1903).
- L. R. Fokin and A. N. Kalashnikov, “The Transport Properties of an N_2-H_2 Mixture of Rarefied Gases in the EPIDIF Database,” Teplofiz. Vys. Temp. 47 (5), 675-687 (2009) [High Temp. 47 (5), 643-655 (2009)].
- M. S. Daw and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B 29 (12), 6443-6453 (1984).
- X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, “Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers,” Phys. Rev. B 69 (14), 144113-1-144113-10 (2004).
- J. E. Lennard-Jones, “Cohesion,” Proc. Phys. Soc. 43 (5), 461-482 (1931).
- H. A. Lorentz, “Über die Anwendung des Satzes vom Virial in der Kinetischen Theorie der Gase,” Ann. Phys. 248, 127-136 (1881).
- D. Berthelot, “Sur le Mélange des Gaz,” C. R. Acad. Sci. 126, 1703-1706 (1889).
- P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels,” Phys. Rev. 34, 57-64 (1929).
- S. Maruyama, “Molecular Dynamics Method for Microscale Heat Transfer,” in Advances in Numerical Heat Transfer (Taylor and Francis, New York, 2000), Vol. 2, pp. 189-226.
- D. V. Sivukhin, The General Course of Physics , Vol. 2: Thermodynamics and Molecular Physics (Nauka, Moscow, 1975) [in Russian].
- H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., “Molecular Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81, 3684-3690 (1984).
- D. W. Heermann, Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1986; Nauka, Moscow, 1990).
- I. V. Fryazinov, “The Balance Method and Variational-Difference Schemes,” Differ. Uravn. 16 (7), 1332-1343 (1980).
- A. A. Samarskii, A. V. Koldoba, Yu. A. Poveshchenko, V. F. Tishkin, and A. P. Favorskii, Difference Schemes on Irregular Grids (Kriterii, Minsk, 1996) [in Russian].
- R. Eymard, T. R. Gallouet, and R. Herbin, “The Finite Volume Method,” in Handbook of Numerical Analysis (North Holland, Amsterdam, 2000), Vol. 7, pp. 713-1020.
- I. V. Popov and I. V. Fryazinov, “Method of Adaptive Artificial Viscosity for the Equations of Gas Dynamics on Triangular and Tetrahedral Grids,” Mat. Model. 24 (6), 109-127 (2012) [Math. Models Comput. Simul. 5 (1), 50-62 (2013)].
- L. Verlet, “Computer ’Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159, 98-103 (1967).
- A. Toselli and O. B. Widlund, Domain Decomposition Methods - Algorithms and Theory (Springer, Berlin, 2005).
- S. V. Polyakov, Yu. N. Karamzin, O. A. Kosolapov, et al., “Hybrid Supercomputer Platform and Application Programming for the Solution of Continuous Mechanics Problems by Grid Methods,” Izv. Southern Federal Univ., Ser. Tekh. Nauki, No. 6, 105-115 (2012).
- The Message Passing Interface (MPI) Standard.
http://www.mcs.anl.gov/research/projects/mpi . Cited April 15, 2016.
- The OpenMP API Specification for Parallel Programming. Tutorials.
http://www.llnl.gov/computing/tutorials/openMP . Cited April 15, 2016.
- CUDA Toolkit Documentation.
http://docs.nvidia.com/cuda/index.html . Cited April 15, 2016.
- G. Karypis and V. Kumar, METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices.
https://pdfs.semanticscholar.org/cdd7/c53628f8e5aac90bb2f3f6d3539b9ed1a20e.pdf . Cited April 15, 2016.
- G. Karypis and K. Schloegel, ParMETIS: Parallel Graph Partitioning and Sparse Matrix Ordering Library.
https://www.researchgate.net/publication/238705993 . Cited April 15, 2016.