Регуляризированное обращение полных тензорных магнитно-градиентных данных
Авторы
-
Я. Ван
-
Д.В. Лукьяненко
-
А.Г. Ягола
Ключевые слова:
магнитостатика
полный тензор градиентов компонент магнитной индукции
обратные задачи
некорректно поставленные задачи
метод регуляризации
Аннотация
Рассматриваются особенности численной реализации решения трехмерной обратной задачи обращения полных тензорных магнитно-градиентных данных, которая моделируется системой двух трехмерных интегральных уравнений Фредгольма 1-го рода. Для решения этой некорректно поставленной задачи применяется алгоритм, основанный на минимизации функционала А.Н.Тихонова. В качестве метода минимизации используется метод сопряженных градиентов. Выбор параметра регуляризации осуществляется в соответствии с версией обобщенного принципа невязки, в которой учитываются ошибки округления, существенные при решении задач большой размерности.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., “Practice of ’Lomonosov’ Supercomputer,” Otkrytye Sistemy, No. 7, 36-39 (2012).
- P. G. Leliévre and D. W. Oldenburg, “Magnetic Forward Modelling and Inversion for High Susceptibility,” Geophys J. Int. 166 (1), 76-90 (2006).
- Y. Li and D. W. Oldenburg, “3-D Inversion of Magnetic Data,” Geophysics 61 (2), 394-408 (1996).
- A. Pignatelli, I. Nicolosi, and M. Chiappini, “An Alternative 3D Inversion Method for Magnetic Anomalies with Depth Resolution,” Ann. Geophys. 49 (4/5), 1021-1027 (2006).
- D. V. Lukyanenko, A. G. Yagola, and N. A. Evdokimova, “Application of Inversion Methods in Solving Ill-Posed Problems for Magnetic Parameter Identification of Steel Hull Vessel,” J. Inverse Ill-Posed Probl. 18 (9), 1013-1029 (2011).
- D. V. Lukyanenko and A. G. Yagola, “Application of Multiprocessor Systems for Solving Three-Dimensional Fredholm Integral Equations of the First Kind for Vector Functions,” Vychisl. Metody Programm. 11, 336-343 (2010).
- A. Christensen and S. Rajagopalan, “The Magnetic Vector and Gradient Tensor in Mineral and Oil Exploration,” Preview 84, 77 (2000).
- P. Heath, G. Heinson, and S. Greenhalgh, “Some Comments on Potential Field Tensor Data,” Explor. Geophys. 34 (2), 57-62 (2003).
- M. Schiffler, M. Queitsch, R. Stolz, et al., “Calibration of SQUID Vector Magnetometers in Full Tensor Gradiometry Systems,” Geophys. J. Int. 198 (2), 954-964 (2014).
- P. W. Schmidt and D. A. Clark, “Advantages of Measuring the Magnetic Gradient Tensor,” Preview 85, 26-30 (2000).
- P. Schmidt, D. Clark, K. Leslie, et al., “GETMAG - a SQUID Magnetic Tensor Gradiometer for Mineral and Oil Exploration,” Explor. Geophys. 35 (4), 297-305 (2004).
- M. S. Zhdanov, H. Cai, and G. A. Wilson, “3D Inversion of SQUID Magnetic Tensor Data,” J. Geol. Geosci. 1, 1-5 (2012).
- S. Ji, Y. Wang, and A. Zou, “Regularizing Inversion of Susceptibility with Projection onto Convex Set Using Full Tensor Magnetic Gradient Data,” Inverse Probl. Sci. Eng. 2016 (in press).
- V. A. Morozov, “Regularization of Incorrectly Posed Problems and the Choice of Regularization Parameter,” Zh. Vychisl. Mat. Mat. Fiz. 6 (1), 170-175 (1966) [USSR Comput. Math. Math. Phys. 6 (1), 242-251 (1966)].
- A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Numerical Methods for Solving Incorrect Problems (Nauka, Moscow, 1990) [in Russian].
- N. N. Kalitkin and L. V. Kuz’mina, “Improved Form of the Conjugate Gradient Method,” Mat. Model. 23 (7), 33-51 (2011) [Math. Models Comput. Simul. 4 (1), 68-81 (2012)].
- N. N. Kalitkin and L. V. Kuz’mina, “Improved Forms of Iterative Methods for Systems of Linear Algebraic Equations,” Dokl. Akad. Nauk 451 (3), 264-270 (2013) [Dokl. Math. 88 (1), 489-494 (2013)].