Построение точных частотно-зависимых лучей при известном решении уравнения Гельмгольца
Авторы
-
К.Г. Гадыльшин
-
М.И. Протасов
Ключевые слова:
уравнение Гельмгольца
точные частотно-зависимые лучи
лучевая теория
численные методы
Аннотация
Предложен численный метод построения точных частотно-зависимых лучей, когда известно решение уравнения Гельмгольца. Впервые представлен анализ свойств частотно-зависимых лучей и их сравнение со стандартной лучевой теорией и с методом конечно-разностного моделирования. Изучена зависимость частотно-зависимых лучей от частоты зондирующего сигнала. Показано, что при увеличении частоты частотно-зависимые лучи стремятся к классическим лучам. Численные эксперименты демонстрируют отличительные особенности частотно-зависимых лучей, в частности их способность проникать в зоны тени, недоступные для классической лучевой теории.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory (Nauka, Moscow, 1972; Springer, Heidelberg, 1989).
- Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Nauka, Moscow, 1980; Springer, Heidelberg, 1990).
- M. I. Protasov and K S. Osypov, “Frequency Dependent Ray Tracing for Irregular Boundaries,” Seismic Technol. 11 (3), 1-11 (2014).
- B. Biondi, “Solving the Frequency-Dependent Eikonal Equation,” 62nd Annual Int. SEG Meeting Expanded Abstracts 11, 1315-1319 (1992).
doi 10.1190/1.1821982
- T. L. Foreman, A Frequency Dependent Ray Theory , PhD Thesis (Univ. of Texas at Austin, Austin, 1987).
- M. J. Grote and I. Sim, Efficient PML for the Wave Equation , arXiv preprint: 1001.0319v1 [math.NA] (Cornell Univ. Library, Ithaca, 2010), available at
http://arxiv.org/abs/1001.0319v1.
- X. S. Li and J. W. Demmel, “SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems,” ACM Trans. Math. Softw. 29 (2), 110-140 (2003).
- D. A. Neklyudov, I. Yu. Silvestrov, and V. A. Tcheverda, “A 3D Helmholtz Iterative Solver with a Semi-Analytical Preconditioner for Acoustic Wavefield Modeling in Seismic Exploration Problems,” Vychisl. Metody Programm. 15, 514-529 (2014).
- K. V. Voronin and S. A. Solovyev, “Solution of the Helmholtz Problem Using the Preconditioned Low-Rank Approximation Technique,” Vychisl. Metody Programm. 16, 268-280 (2015).
- A. Lomax, “The Wavelength-Smoothing Method for Approximating Broad-Band Wave Propagation through Complicated Velocity Structures,” Geophys. J. Int. 117 (2), 313-334 (1994).
- M. I. Protasov and V. A. Tcheverda, “True Amplitude Imaging by Inverse Generalized Radon Transform Based on Gaussian Beam Decomposition of the Acoustic Green’s Function,” Geophys. Prospect. 59 (2), 197-209 (2011).
- M. J. Woodward, “Wave-Equation Tomography,” Geophysics 57 (1), 15-26 (1992).