Алгоритм переменной структуры с применением (3,2)-схемы и метода Фельберга
Ключевые слова:
жесткие системы
k)-схемы
метод Фельберга
методы Рунге–Кутта
контроль точности и устойчивости
алгоритм переменной структуры
обыкновенные дифференциальные уравнения
численные методы
Аннотация
Построен (3,2)-метод третьего порядка с замораживанием матрицы Якоби, в котором L-устойчивыми являются основная и промежуточные численные схемы. Получено неравенство для контроля точности вычислений с использованием вложенного метода второго порядка. Предложено неравенство для контроля устойчивости явного трехстадийного метода Рунге-Кутта-Фельберга третьего порядка. Сформулирован алгоритм переменной структуры, в котором на каждом шаге явный или L-устойчивый метод выбираются по критерию устойчивости. Приведены результаты расчетов.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems (Springer, Berlin, 1996; Mir, Moscow, 1999).
- E. Hairer, S. P. Nörsett, and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems (Springer, Berlin, 1987; Mir, Moscow, 1990).
- E. A. Novikov and Yu. V. Shornikov, Computer Simulation of Stiff Hybrid Systems (Novosibirsk Tech. Univ., Novosibirsk, 2012) [in Russian].
- N. D. Demidenko, V. A. Kulagin, and Yu. I. Shokin, Modeling and Computational Technologies of Distributed Systems (Nauka, Novosibirsk, 2012) [in Russian].
- H. H. Rosenbrock, “Some General Implicit Processes for the Numerical Solution of Differential Equations,” Comput. J. 5 (4), 329-330 (1963).
- V. A. Novikov, E. A. Novikov, and L. A. Yumatova, “Freezing of the Jacobi Matrix in the Second Order Rosenbrock Method,” Zh. Vychisl. Mat. Mat. Fiz. 27 (3), 385-390 (1987) [USSR Comput. Math. Math. Phys. 27 (2), 41-45 (1987)].
- E. A. Novikov and A. L. Dvinskii, “Jacoby Matrix Freezing for Rosenbrock-Type Methods,” Vychisl. Tekhnol. 10, 108-114 (2005).
- A. E. Novikov and E. A. Novikov, “Numerical Integration of Stiff Systems with Low Accuracy,” Mat. Model. 22 (1), 46-56 (2010) [Math. Models Comput. Simul. 2 (4), 443-452 (2010)].
- E. A. Novikov, “Construction of an Algorithm for the Integrating Stiff Differential Equations on Nonuniform Schemes,” Dokl. Akad. Nauk SSSR 278 (2), 272-275 (1984) [Sov. Math. Dokl. 30 (2), 358-361 (1984)].
- V. A. Novikov and E. A. Novikov, “Control of the Stability of Explicit One-Step Methods of Integrating Ordinary Differential Equations,” Dokl. Akad. Nauk SSSR 277 (5), 1058-1062 (1984) [Sov. Math. Dokl. 30 (1), 211-215 (1984)].
- E. A. Novikov, Explicit Methods for Stiff Systems (Nauka, Novosibirsk, 1997) [in Russian].
- E. A. Novikov, Yu. A. Shitov, and Yu. I. Shokin, “One-Step Noniteration Method for Solving Stiff Systems,” Dokl. Akad. Nauk SSSR 301 (6), 1310-1314 (1988).
- G. G. Dahlquist, “A Special Stability Problem for Linear Multistep Methods,” BIT Numer. Math. 3 (1), 27-43 (1963).
- G. V. Demidov and L. A. Yumatova, The Investigation of Precision of Implicit One-Step Methods , Preprint No. 25 (Comput. Center of Siberian Branch of USSR Academy of Sciences, Novosibirsk, 1976).
- E. Fehlberg, Low Order Classical Runge-Kutta Formulas with Step Size Control and Their Application to Some Heat Transfer Problems , NASA Technical Report R 315 (NASA, Huntsville, 1969).
- G. D. Byrne and A. C. Hindmarsh, “Stiff ODE Solvers: A Review of Current and Coming Attractions,” J. Comput. Phys. 70 (1), 1-62 (1987).
- W. H. Enright, T. E. Hull, and B. Lindberg, “Comparing Numerical Methods for Stiff Systems of ODE’s,” BIT Numer. Math. 15 (1), 10-48 (1975).
- F. Mazzia and C. Magherini, Test Set for Initial Value Problem Solvers , Technical Report 4/2008 (University of Bari, Bari, 2008).