Дисперсионный анализ разрывного метода Галеркина в применении к уравнениям динамической теории упругости
Авторы
-
В.В. Лисица
Ключевые слова:
численная дисперсия
разрывный метод Галеркина
конечно-разностные схемы
теория упругости
Аннотация
Приводится дисперсионный анализ разрывного метода Галеркина в применении к системе уравнений динамической теории упругости. В зависимости от степени базисных полиномов рассматриваются P1-, P2- и P3-формулировки метода при использовании регулярной треугольной сетки. Показано, что для задач сейсмического моделирования оптимальной является P2-формулировка, поскольку сочетает в себе достаточную точность (численная дисперсия не выше 0.05% и вычислительную эффективность. Использование P1-формулировки приводит к недопустимо высокой численной дисперсии, в то время как P3-формулировка является чрезвычайно ресурсоемкой при использовании дискретизаций от 3 до 20 ячеек сетки на длину волны, типичной для сейсмического моделирования.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- M. P. Varygina, M. A. Pokhabova, O. V. Sadovskaya, and V. M. Sadovskii, “Numerical Algorithms for the Analysis of Elastic Waves in Block Media with Thin Interlayers,” Vychisl. Metody Programm. 12, 435-442 (2011).
- D. M. Vishnevsky, V. V. Lisitsa, and G. V. Reshetova, “Numerical Simulation of Seismic Wave Propagation in Media with Viscoelastic Intrusions,” Vychisl. Metody Programm. 14, 155-165 (2013).
- K. G. Gadylshin and V. A. Tcheverda, “Nonlinear Least-Squares Full Waveform Inversion: SVD Analysis,” Vychisl. Metody Programm. 15, 499-513 (2014).
- S. K. Godunov, Modern Aspects of Linear Algebra (Nauchnaya Kniga, Novosibirsk, 1997; Amer. Math. Soc., Providence, 1998).
- S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauchnaya Kniga, Novosibirsk, 1998; Kluwer, New York, 2003).
- V. I. Kostin, V. V. Lisitsa, G. V. Reshetova, and V. A. Tcheverda, “A Finite-Difference Method for the Numerical Simulation of Seismic Wave Propagation through Multiscale Media,” Vychisl. Metody Programm. 12, 321-329 (2011).
- V. I. Lebedev, “Difference Analogues of Orthogonal Decompositions, Basic Differential Operators and Some Boundary Problems of Mathematical Physics. I,” Zh. Vychisl. Mat. Mat. Fiz. 4 (3), 449-465 (1964) [USSR Comput. Math. Math. Phys. 4 (3), 69-92 (1964)].
- V. M. Sadovskii and O. V. Sadovskaya, “A Numerical Algorithm for the Analysis of Viscoelastic Waves in the Kelvin-Voigt Medium,” Vychisl. Metody Programm. 15, 98-108 (2014).
- M. Ainsworth, P. Monk, and W. Muniz, “Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation,” J. Sci. Comput. 27 (1-3), 5-40 (2006).
- M. Ainsworth, “Dispersive and Dissipative Behavior of High Order Discontinuous Galerkin Finite Element Methods,” J. Comput. Phys. 198 (1), 106-130 (2004).
- M. Ainsworth and H. A. Wajid, “Dispersive and Dissipative Behavior of the Spectral Element Method,” SIAM J. Numer. Anal. 47 (5), 3910-3937 (2009).
- I. Babuška, T. Strouboulis, S. K. Gangaraj, and C. S. Upadhyay, “Pollution Error in the h-Version of the Finite Element Method and the Local Quality of the Recovered Derivatives,” Comput. Meth. Appl. Mech. Eng. 140 (1-2), 1-37 (1997).
- J. D. De Basabe, M. K. Sen, and M. F. Wheeler, “Seismic Wave Propagation in Fractured Media: A Discontinuous Galerkin Approach,” SEG Tech. Program Expanded Abstr. 30, 2920-2924 (2011).
doi 10.1190/1.3627801
- J.-P. Bérenger, “The Huygens Subgridding for the Numerical Solution of the Maxwell Equations,” J. Comput. Phys. 230 (14), 5635-5659 (2011).
- J. O. Blanch, J. O. A. Robertsson, and W. W. Symes, “Modeling of a Constant Q: Methodology and Algorithm for an Efficient and Optimally Inexpensive Viscoelastic Technique,” Geophysics 60 (1), 176-184 (1995).
- T. Bohlen, “Parallel 3-D Viscoelastic Finite Difference Seismic Modelling,” Comput. Geosci. 28 (8), 887-899 (2002).
- T. Bohlen and E. H. Saenger, “Accuracy of Heterogeneous Staggered-Grid Finite-Difference Modeling of Rayleigh Waves,” Geophysics 71 (4), T109-T115 (2006).
- J. M. Carcione, D. Kosloff, and R. Kosloff, “Wave Propagation Simulation in a Linear Viscoacoustic Medium,” Geophys. J. Roy. Astr. Soc. 93 (2), 393-401 (1988).
- J. M. Carcione, S. Picotti, and J. E. Santos, “Numerical Experiments of Fracture-Induced Velocity and Attenuation Anisotropy,” Geophys. J. Int. 191 (3), 1179-1191 (2012).
- G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, Berlin, 2002).
- S. Davydycheva, V. Druskin, and T. Habashy, “An Efficient Finite-Difference Scheme for Electromagnetic Logging in 3D Anisotropic Inhomogeneous Media,” Geophysics 68 (5), 1525-1535 (2003).
- K. Dumbser and M. K854ser, “An Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes - II. The Three-Dimensional Isotropic Case,” Geophys. J. Int. 167 (1), 319-336 (2006).
- V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, “An hp-Adaptive Discontinuous Galerkin Finite-Element Method for 3-D Elastic Wave Modelling,” Geophys. J. Int. 183 (2), 941-962 (2010).
- S. Hestholm and B. Ruud, “3D Free-Boundary Conditions for Coordinate-Transform Finite-Difference Seismic Modelling,” Geophys. Prospect. 50 (5), 463-474 (2002).
- F. Q. Hu, M. Y. Hussaini, and P. Rasetarinera, “An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems,” J. Comput. Phys. 151 (2), 921-946 (1999).
- F. Q. Hu and H. L. Atkins, “Eigensolution Analysis of the Discontinuous Galerkin Method with Nonuniform Grids: I. One Space Dimension,” J. Comput. Phys. 182 (2), 516-545 (2002).
- M. K854ser and M. Dumbser, “An Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes - I. The Two-Dimensional Isotropic Case with External Source Terms,” Geophys. J. Int. 166 (2), 855-877 (2006).
- V. Kostin, V. Lisitsa, G. Reshetova, and V. Tcheverda, “Simulation of Seismic Waves Propagation in Multiscale Media: Impact of Cavernous/Fractured Reservoirs,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2012), Vol. 7133, pp. 54-64.
- A. R. Levander, “Fourth-Order Finite-Difference P-SV Seismograms,” Geophysics 53 (11), 1425-1436 (1988).
- V. Lisitsa, O. Podgornova, and V. Tcheverda, “On the Interface Error Analysis for Finite Difference Wave Simulation,” Comput. Geosci. 14 (4), 769-778 (2010).
- V. Lisitsa and D. Vishnevskiy, “Lebedev Scheme for the Numerical Simulation of Wave Propagation in 3D Anisotropic Elasticity,” Geophys. Prospect. 58 (4), 619-635 (2010).
- G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media (Cambridge Univ. Press, New York, 2009).
- P. Moczo, J. Kristek, M. Gális, and P. Pazak, “On Accuracy of the Finite-Difference and Finite-Element Schemes with Respect to P-Wave to S-Wave Speed Ratio,” Geophys. J. Int. 182 (1), 493-510 (2010).
- P. Moczo, J. Kristek, and M. Gális, The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures (Cambridge Univ. Press, New York, 2014).
- P. B. Monk and A. K. Parrott, “A Dispersion Analysis of Finite Element Methods for Maxwell’s Equations,” SIAM J. Sci. Comput. 15 (4), 916-937 (1994).
- W. A. Mulder, “Spurious Modes in Finite-Element Discretizations of the Wave Equation May Not Be All That Bad,” Appl. Numer. Math. 30 (4), 425-445 (1999).
- D. Pissarenko, G. V. Reshetova, and V. A. Tcheverda, “3D Finite-Difference Synthetic Acoustic Logging in Cylindrical Coordinates,” Geophys. Prospect. 57 (3), 367-377 (2009).
- O. Rojas, B. Otero, J. E. Castillo, and S. M. Day, “Low Dispersive Modeling of Rayleigh Waves on Partly Staggered Grids,” Comput. Geosci. 18 (1), 29-43 (2014).
- E. H. Saenger and T. Bohlen, “Finite-Difference Modeling of Viscoelastic and Anisotropic Wave Propagation Using the Rotated Staggered Grid,” Geophysics 69 (2), 583-591 (2004).
- E. H. Saenger, N. Gold, and S. A. Shapiro, “Modeling the Propagation of the Elastic Waves Using a Modified Finite-Difference Grid,” Wave Motion 31 (1), 77-92 (2000).
- G. Seriani and S. P. Oliveira, “Dispersion Analysis of Spectral Element Methods for Elastic Wave Propagation,” Wave Motion 45 (6), 729-744 (2008).
- W. W. Symes and T. Vdovina, “Interface Error Analysis for Numerical Wave Propagation,” Comput. Geosci. 13 (3), 363-371 (2009).
- I. Tarrass, L. Giraud, and P. Thore, “New Curvilinear Scheme for Elastic Wave Propagation in Presence of Curved Topography,” Geophys. Prospect. 59 (5), 889-906 (2011).
- J. Virieux, “P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method,” Geophysics 51 (4), 889-901 (1986).
- J. Virieux, H. Calandra, and R.-É. Plessix, “A Review of the Spectral, Pseudo-Spectral, Finite-Difference and Finite-Element Modelling Techniques for Geophysical Imaging,” Geophys. Prospect. 59 (5), 794-813 (2011).
- J. Virieux and S. Operto, “An Overview of Full-Waveform Inversion in Exploration Geophysics,” Geophysics 74 (6), WCC1-WCC26 (2009).
- J. Virieux, S. Operto, H. Ben-Hadj-Ali, et al., “Seismic Wave Modeling for Seismic Imaging,” The Leading Edge 28 (5), 538-544 (2009).
- D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, “Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves,” Geophysics 79 (4), T219-T232 (2014).
- L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A High-Order Discontinuous Galerkin Method for Wave Propagation through Coupled Elastic-Acoustic Media,” J. Comput. Phys. 229 (24), 9373-9396 (2010).
- D. F. Winterstein, “Velocity Anisotropy Terminology for Geophysicists,” Geophysics 55 (8), 1070-1088 (1990).
- H. Yang, F. Li, and J. Qiu, “Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods,” J. Sci. Comput. 55 (3), 552-574 (2013).
- F. I. Zyserman, P. M. Gauzellino, and J. E. Santos, “Dispersion Analysis of a Non-Conforming Finite Element Method for the Helmholtz and Elastodynamic Equations,” Int. J. Numer. Meth. Eng. 58 (9), 1381-1395 (2003).