DOI: https://doi.org/10.26089/NumMet.v16r338

Дисперсионный анализ разрывного метода Галеркина в применении к уравнениям динамической теории упругости

Авторы

  • В.В. Лисица

Ключевые слова:

численная дисперсия
разрывный метод Галеркина
конечно-разностные схемы
теория упругости

Аннотация

Приводится дисперсионный анализ разрывного метода Галеркина в применении к системе уравнений динамической теории упругости. В зависимости от степени базисных полиномов рассматриваются P1-, P2- и P3-формулировки метода при использовании регулярной треугольной сетки. Показано, что для задач сейсмического моделирования оптимальной является P2-формулировка, поскольку сочетает в себе достаточную точность (численная дисперсия не выше 0.05% и вычислительную эффективность. Использование P1-формулировки приводит к недопустимо высокой численной дисперсии, в то время как P3-формулировка является чрезвычайно ресурсоемкой при использовании дискретизаций от 3 до 20 ячеек сетки на длину волны, типичной для сейсмического моделирования.


Загрузки

Опубликован

2015-07-20

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Автор

В.В. Лисица

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
проспект Академика Коптюга, 3, 630090, Новосибирск
• заведующий лабораторией


Библиографические ссылки

  1. M. P. Varygina, M. A. Pokhabova, O. V. Sadovskaya, and V. M. Sadovskii, “Numerical Algorithms for the Analysis of Elastic Waves in Block Media with Thin Interlayers,” Vychisl. Metody Programm. 12, 435-442 (2011).
  2. D. M. Vishnevsky, V. V. Lisitsa, and G. V. Reshetova, “Numerical Simulation of Seismic Wave Propagation in Media with Viscoelastic Intrusions,” Vychisl. Metody Programm. 14, 155-165 (2013).
  3. K. G. Gadylshin and V. A. Tcheverda, “Nonlinear Least-Squares Full Waveform Inversion: SVD Analysis,” Vychisl. Metody Programm. 15, 499-513 (2014).
  4. S. K. Godunov, Modern Aspects of Linear Algebra (Nauchnaya Kniga, Novosibirsk, 1997; Amer. Math. Soc., Providence, 1998).
  5. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauchnaya Kniga, Novosibirsk, 1998; Kluwer, New York, 2003).
  6. V. I. Kostin, V. V. Lisitsa, G. V. Reshetova, and V. A. Tcheverda, “A Finite-Difference Method for the Numerical Simulation of Seismic Wave Propagation through Multiscale Media,” Vychisl. Metody Programm. 12, 321-329 (2011).
  7. V. I. Lebedev, “Difference Analogues of Orthogonal Decompositions, Basic Differential Operators and Some Boundary Problems of Mathematical Physics. I,” Zh. Vychisl. Mat. Mat. Fiz. 4 (3), 449-465 (1964) [USSR Comput. Math. Math. Phys. 4 (3), 69-92 (1964)].
  8. V. M. Sadovskii and O. V. Sadovskaya, “A Numerical Algorithm for the Analysis of Viscoelastic Waves in the Kelvin-Voigt Medium,” Vychisl. Metody Programm. 15, 98-108 (2014).
  9. M. Ainsworth, P. Monk, and W. Muniz, “Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation,” J. Sci. Comput. 27 (1-3), 5-40 (2006).
  10. M. Ainsworth, “Dispersive and Dissipative Behavior of High Order Discontinuous Galerkin Finite Element Methods,” J. Comput. Phys. 198 (1), 106-130 (2004).
  11. M. Ainsworth and H. A. Wajid, “Dispersive and Dissipative Behavior of the Spectral Element Method,” SIAM J. Numer. Anal. 47 (5), 3910-3937 (2009).
  12. I. Babuška, T. Strouboulis, S. K. Gangaraj, and C. S. Upadhyay, “Pollution Error in the h-Version of the Finite Element Method and the Local Quality of the Recovered Derivatives,” Comput. Meth. Appl. Mech. Eng. 140 (1-2), 1-37 (1997).
  13. J. D. De Basabe, M. K. Sen, and M. F. Wheeler, “Seismic Wave Propagation in Fractured Media: A Discontinuous Galerkin Approach,” SEG Tech. Program Expanded Abstr. 30, 2920-2924 (2011).
    doi 10.1190/1.3627801
  14. J.-P. Bérenger, “The Huygens Subgridding for the Numerical Solution of the Maxwell Equations,” J. Comput. Phys. 230 (14), 5635-5659 (2011).
  15. J. O. Blanch, J. O. A. Robertsson, and W. W. Symes, “Modeling of a Constant Q: Methodology and Algorithm for an Efficient and Optimally Inexpensive Viscoelastic Technique,” Geophysics 60 (1), 176-184 (1995).
  16. T. Bohlen, “Parallel 3-D Viscoelastic Finite Difference Seismic Modelling,” Comput. Geosci. 28 (8), 887-899 (2002).
  17. T. Bohlen and E. H. Saenger, “Accuracy of Heterogeneous Staggered-Grid Finite-Difference Modeling of Rayleigh Waves,” Geophysics 71 (4), T109-T115 (2006).
  18. J. M. Carcione, D. Kosloff, and R. Kosloff, “Wave Propagation Simulation in a Linear Viscoacoustic Medium,” Geophys. J. Roy. Astr. Soc. 93 (2), 393-401 (1988).
  19. J. M. Carcione, S. Picotti, and J. E. Santos, “Numerical Experiments of Fracture-Induced Velocity and Attenuation Anisotropy,” Geophys. J. Int. 191 (3), 1179-1191 (2012).
  20. G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, Berlin, 2002).
  21. S. Davydycheva, V. Druskin, and T. Habashy, “An Efficient Finite-Difference Scheme for Electromagnetic Logging in 3D Anisotropic Inhomogeneous Media,” Geophysics 68 (5), 1525-1535 (2003).
  22. K. Dumbser and M. K854ser, “An Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes - II. The Three-Dimensional Isotropic Case,” Geophys. J. Int. 167 (1), 319-336 (2006).
  23. V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, “An hp-Adaptive Discontinuous Galerkin Finite-Element Method for 3-D Elastic Wave Modelling,” Geophys. J. Int. 183 (2), 941-962 (2010).
  24. S. Hestholm and B. Ruud, “3D Free-Boundary Conditions for Coordinate-Transform Finite-Difference Seismic Modelling,” Geophys. Prospect. 50 (5), 463-474 (2002).
  25. F. Q. Hu, M. Y. Hussaini, and P. Rasetarinera, “An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems,” J. Comput. Phys. 151 (2), 921-946 (1999).
  26. F. Q. Hu and H. L. Atkins, “Eigensolution Analysis of the Discontinuous Galerkin Method with Nonuniform Grids: I. One Space Dimension,” J. Comput. Phys. 182 (2), 516-545 (2002).
  27. M. K854ser and M. Dumbser, “An Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes - I. The Two-Dimensional Isotropic Case with External Source Terms,” Geophys. J. Int. 166 (2), 855-877 (2006).
  28. V. Kostin, V. Lisitsa, G. Reshetova, and V. Tcheverda, “Simulation of Seismic Waves Propagation in Multiscale Media: Impact of Cavernous/Fractured Reservoirs,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2012), Vol. 7133, pp. 54-64.
  29. A. R. Levander, “Fourth-Order Finite-Difference P-SV Seismograms,” Geophysics 53 (11), 1425-1436 (1988).
  30. V. Lisitsa, O. Podgornova, and V. Tcheverda, “On the Interface Error Analysis for Finite Difference Wave Simulation,” Comput. Geosci. 14 (4), 769-778 (2010).
  31. V. Lisitsa and D. Vishnevskiy, “Lebedev Scheme for the Numerical Simulation of Wave Propagation in 3D Anisotropic Elasticity,” Geophys. Prospect. 58 (4), 619-635 (2010).
  32. G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media (Cambridge Univ. Press, New York, 2009).
  33. P. Moczo, J. Kristek, M. Gális, and P. Pazak, “On Accuracy of the Finite-Difference and Finite-Element Schemes with Respect to P-Wave to S-Wave Speed Ratio,” Geophys. J. Int. 182 (1), 493-510 (2010).
  34. P. Moczo, J. Kristek, and M. Gális, The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures (Cambridge Univ. Press, New York, 2014).
  35. P. B. Monk and A. K. Parrott, “A Dispersion Analysis of Finite Element Methods for Maxwell’s Equations,” SIAM J. Sci. Comput. 15 (4), 916-937 (1994).
  36. W. A. Mulder, “Spurious Modes in Finite-Element Discretizations of the Wave Equation May Not Be All That Bad,” Appl. Numer. Math. 30 (4), 425-445 (1999).
  37. D. Pissarenko, G. V. Reshetova, and V. A. Tcheverda, “3D Finite-Difference Synthetic Acoustic Logging in Cylindrical Coordinates,” Geophys. Prospect. 57 (3), 367-377 (2009).
  38. O. Rojas, B. Otero, J. E. Castillo, and S. M. Day, “Low Dispersive Modeling of Rayleigh Waves on Partly Staggered Grids,” Comput. Geosci. 18 (1), 29-43 (2014).
  39. E. H. Saenger and T. Bohlen, “Finite-Difference Modeling of Viscoelastic and Anisotropic Wave Propagation Using the Rotated Staggered Grid,” Geophysics 69 (2), 583-591 (2004).
  40. E. H. Saenger, N. Gold, and S. A. Shapiro, “Modeling the Propagation of the Elastic Waves Using a Modified Finite-Difference Grid,” Wave Motion 31 (1), 77-92 (2000).
  41. G. Seriani and S. P. Oliveira, “Dispersion Analysis of Spectral Element Methods for Elastic Wave Propagation,” Wave Motion 45 (6), 729-744 (2008).
  42. W. W. Symes and T. Vdovina, “Interface Error Analysis for Numerical Wave Propagation,” Comput. Geosci. 13 (3), 363-371 (2009).
  43. I. Tarrass, L. Giraud, and P. Thore, “New Curvilinear Scheme for Elastic Wave Propagation in Presence of Curved Topography,” Geophys. Prospect. 59 (5), 889-906 (2011).
  44. J. Virieux, “P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method,” Geophysics 51 (4), 889-901 (1986).
  45. J. Virieux, H. Calandra, and R.-É. Plessix, “A Review of the Spectral, Pseudo-Spectral, Finite-Difference and Finite-Element Modelling Techniques for Geophysical Imaging,” Geophys. Prospect. 59 (5), 794-813 (2011).
  46. J. Virieux and S. Operto, “An Overview of Full-Waveform Inversion in Exploration Geophysics,” Geophysics 74 (6), WCC1-WCC26 (2009).
  47. J. Virieux, S. Operto, H. Ben-Hadj-Ali, et al., “Seismic Wave Modeling for Seismic Imaging,” The Leading Edge 28 (5), 538-544 (2009).
  48. D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, “Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves,” Geophysics 79 (4), T219-T232 (2014).
  49. L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A High-Order Discontinuous Galerkin Method for Wave Propagation through Coupled Elastic-Acoustic Media,” J. Comput. Phys. 229 (24), 9373-9396 (2010).
  50. D. F. Winterstein, “Velocity Anisotropy Terminology for Geophysicists,” Geophysics 55 (8), 1070-1088 (1990).
  51. H. Yang, F. Li, and J. Qiu, “Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods,” J. Sci. Comput. 55 (3), 552-574 (2013).
  52. F. I. Zyserman, P. M. Gauzellino, and J. E. Santos, “Dispersion Analysis of a Non-Conforming Finite Element Method for the Helmholtz and Elastodynamic Equations,” Int. J. Numer. Meth. Eng. 58 (9), 1381-1395 (2003).