Градиентные методы решения структурных обратных задач гравиметрии и магнитометрии на суперкомпьютере «Уран
Авторы
-
Е.Н. Акимова
-
В.Е. Мисилов
-
А.Ф. Скурыдина
-
А.И. Третьяков
Ключевые слова:
обратные задачи гравиметрии и магнитометрии
параллельные алгоритмы
методы градиентного типа
многоядерные и графические процессоры
Аннотация
Для решения трехмерных структурных обратных задач гравиметрии и магнитометрии о нахождении поверхностей раздела слоев постоянной плотности либо намагниченности для модели многослойной среды предложен линеаризованный модифицированный метод наискорейшего спуска с весовыми множителями. Построен линеаризованный метод сопряженных градиентов и его модифицированный вариант с весовыми множителями для решения задач гравиметрии и магнитометрии в многослойной среде. На основе модифицированных методов градиентного типа разработаны эффективные параллельные алгоритмы, численно реализованные на многоядерном процессоре Intel и графических процессорах NVIDIA. Для модельной задачи проведено сравнение параллельных итерационных алгоритмов по относительной погрешности, числу итераций и времени счета.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- B. V. Numerov, “Interpretation of Gravitational Observations in the Case of One Contact Surface,” Dokl. Akad. Nauk SSSR, No. 21, 569-574 (1930).
- N. R. Malkin, “On the Solution of the Inverse Magnetic Problem for the Case of One Contact Surface (Layered Distribution of Masses),” Dokl. Akad. Nauk SSSR, No. 9, 232-235 (1931).
- A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Kluwer, Dordrecht, 1994).
- P. S. Martyshko, I. V. Ladovskii, and A. G. Tsidaev, “Construction of Regional Geophysical Models Based on the Joint Interpretation of Gravity and Seismic Data,” Fiz. Zemli, No. 11, 23-35 (2010) [Izv. Phys. Solid Earth 46 (11), 931-942 (2010)].
- V. V. Vasin, “On the Convergence of Gradient-Type Methods for Nonlinear Equations,” Dokl. Akad. Nauk 359 (1), 7-9 (1998) [Dokl. Math. 57 (2), 173-175 (1998)].
- E. N. Akimova, P. S. Martyshko, and V. E. Misilov, “Algorithms for Solving the Structural Gravity Problem in a Multilayer Medium,” Dokl. Akad. Nauk 453 (6), 676-679 (2013) [Dokl. Earth Sci. 453 (2), 1278-1281 (2013)].
- E. N. Akimova, V. V. Vasin, and V. E. Misilov, “Algorithms for Solving Inverse Gravimetry Problems of Finding the Interface between Media on Multiprocessing Computer Systems,” Vestn. Ufa Aviatsion. Tekh. Univ. 18 (2), 208-217 (2014).
- E. N. Akimova, V. E. Misilov, and A. F. Skurydina, “Parallel Algorithms for Solving a Structural Inverse Magnetic Problem on Multiprocessing Computer Systems,” Vestn. Ufa Aviatsion. Tekh. Univ. 18 (4), 206-215 (2014).
- B. T. Polyak., “The Conjugate Gradient Method in Extremal Problems,” Zh. Vychisl. Mat. Mat. Fiz. 9 (4), 807-821 (1969) [USSR Comput. Math. Math. Phys. 9 (4), 94-112 (1969)].
- J. C. Gilbert and J. Nocedal, “Global Convergence Properties of Conjugate Gradient Methods for Optimization,” SIAM J. Optim. 2 (1), 21-42 (1992).
- B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems (De Gruyter, Berlin, 2008).
- V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type (Ural Branch Russ. Acad. Sci., Ekaterinburg, 2005; De Gruyter, Berlin, 2009).
- P. S. Martyshko and I. L. Prutkin, “Technology of Separation of Gravitational Field Sources in Depth,” Geofiz. Zh. 25 (3), 159-168 (2003).
- E. N. Akimova, “Parallel Solution Algorithms of Gravimetry and Magnetometry Inverse Problems on MVS-1000,” Vestn. Univ. Nizhni Novgorod, No. 4, 181-189 (2009).
- A. V. Boreskov and A. A. Kharlamov, Fundamentals of CUDA Technology (DMK Press, Moscow, 2010) [in Russian].
- E. N. Akimova, D. V. Belousov, and V. E. Misilov, “Algorithms for Solving Inverse Geophysical Problems on Parallel Computing Systems,” Sib. Zh. Vych. Mat. 16 (2), 107-121 (2013) [Numer. Anal. Appl. 6 (2), 98-110 (2013)].