Применение метода граничных интегральных уравнений для численного решения первой краевой задачи теориии упругости на многоугольниках
Ключевые слова:
первая краевая задача
потенциал двойного слоя
теория потенциала
граничные интегральные уравнения
угловые точки
метод квадратур
плоская теория упругости
Аннотация
Рассматривается первая краевая задача плоской теории упругости в области с конечным числом угловых точек. Задаче ставится в соответствие система граничных интегральных уравнений теории потенциала. Исследуется вопрос об эффективном вычислении приближенного решения исходной краевой задачи на основе численного решения системы граничных интегральных уравнений.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- I. O. Arushanyan, “On the Numerical Solution of Boundary Integral Equations of the Second Kind in Domains with Corner Points,” Zh. Vychisl. Mat. Mat. Fiz. 36 (6), 101-113 (1996) [Comput. Math. Math. Phys. 36 (6), 773-782 (1996)].
- I. O. Arushanyan, “The Application of the Boundary Integral Equation Method to Numerical Solution of Dirichlet’s Problem in Domains with Corner Points,” Vychisl. Metody Programm. 1, 1-7 (2000).
- I. O. Arushanyan, “Application of the Quadrature Method for Solving Boundary Integral Equations of Plane Elasticity Theory on Polygons,” Vychisl. Metody Programm. 4, 142-154 (2003).
- I. O. Arushanyan, “A Family of Quadrature Formulas for Solving Boundary Integral Equations,” Vychisl. Metody Programm. 14, 461-467 (2013).
- I. O. Arushanyan, “Numerical Solution of Boundary Integral Equations on Curvilinear Polygons,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 55-57 (2014) [Moscow Univ. Math. Bull. 69 (4), 174-176 (2014)].
- I. O. Arushanyan, “An Exponentially Convergent Method for Solving Boundary Integral Equations on Polygons,” Vychisl. Metody Programm. 15 (3), 417-426 (2014).
- I. O. Arushanyan, An Exponentially Convergent Method for Solving Boundary Integral Equations in Domains with Corner Points , Report No. 9628 (Univ. of Nijmegen, Nijmegen, 1996).
- N. S. Bakhvalov, “On the Optimal Speed of Integrating Analytic Functions,” Zh. Vychisl. Mat. Mat. Fiz. 7 (5), 1011-1020 (1967) [USSR Comput. Math. Math. Phys. 7 (5), 63-75 (1967)].
- S. S. Zargaryan and V. G. Maz’ya, “The Asymptotic Form of the Solutions of the Integral Equations of Potential Theory in the Neighbourhood of the Corner Points of a Contour,” Prikl. Mat. Mekh. 48 (1), 169-174 (1984) [J. Appl. Math. Mech. 48 (1), 120-124 (1984)].
- V. G. Maz’ya and A. A. Soloviev, “Integral Equations of Logarithmic Potential Theory on Contours with a Cusp in Hölder Spaces,” Algebra Anal. 10 (5), 85-142 (1998) [St. Petersburg Math. J. 10 (5), 791-832 (1999)].
- V. G. Maz’ya, “Boundary Integral Equations,” in Analysis-4 (VINITI, Moscow, 1988), Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat. Fundam. Napr., Vol. 27, pp. 131-228.
- V. Z. Parton and P. I. Perlin, Integral Equations in Elasticity (Nauka, Moscow, 1977; Mir, Moscow, 1982).
- K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, Cambridge, 1997).
- I. Babušhka, B. Q. Guo, and E. P. Stephan, “On the Exponential Convergence of the h-p Version for Boundary Element Galerkin Methods on Polygons,” Math. Meth. Appl. Sci. 12 (5), 413-427 (1990).
- J. Bremer and V. Rokhlin, “Efficient Discretization of Laplace Boundary Integral Equations on Polygonal Domains,” J. Comput. Phys. 229 (7), 2507-2525 (2010).
- G. A. Chandler, “Superconvergent Approximations to the Solution of a Boundary Integral Equation on Polygonal Domains,” SIAM J. Numer. Anal. 23 (6), 1214-1229 (1986).
- I. G. Graham and G. A. Chandler, “High-Order Methods for Linear Functionals of Solutions of Second Kind Integral Equations,” SIAM J. Numer. Anal. 25 (5), 1118-1137 (1988).
- J. Helsing and R. Ojala, “Corner Singularities for Elliptic Problems: Integral Equations, Graded Meshes, Quadrature, and Compressed Inverse Preconditioning,” J. Comput. Phys. 227 (20), 8820-8840 (2008).
- W. Y. Kong, J. Bremer, and V. Rokhlin, “An Adaptive Fast Direct Solver for Boundary Integral Equations in Two Dimensions,” Appl. Comput. Harmon. Anal. 31 (3), 346-369 (2011).
- R. Kress, “A Nyström Method for Boundary Integral Equations in Domains with Corners,” Numer. Math. 58 (1), 145-161 (1990/91).
- R. Kress, Linear Integral Equations (Springer, Heidelberg, 1999).