Применение квантово-химического полуэмпирического метода PM7 для разработки новых ингибиторов урокиназы

Авторы

  • Е.В. Каткова
  • И.В. Офёркин
  • В.Б. Сулимов

Ключевые слова:

молекулярное моделирование
квантовая химия
полуэмпирические методы
поиск новых ингибиторов
эффективность
оптимальные параметры работы
сеточный докинг
прямой докинг

Аннотация

Представлены результаты использования полуэмпирических квантово-химических методов с помощью программного комплекса MOPAC применительно к задаче поиска новых ингибиторов урокиназы. Проведено исследование оптимальных условий работы в рамках комплекса MOPAC c методом параметризации PM7, позволяющим учитывать различные виды нековалентных межмолекулярных взаимодействий, таких как дисперсионные взаимодействия, галогенные и водородные связи. Показано, что различные способы расстановки водородов на первоначальные рентгено-кристаллические структуры значительно влияют на энергии взаимодействия белка и лиганда и, как следствие, немаловажную роль играет подвижность водородов белка в процессе локальной оптимизации комплекса. На 22 комплексах, включающих в себя уже не только урокиназные белки, была продемонстрирована важность учета растворителя, а также было показано, что расчет энергий взаимодействия методом квантовой химии дает лучшую корреляцию с экспериментом по сравнению с расчетами в силовом поле MMFF94. Для нативных комплексов урокиназа-ингибитор рассчитаны энтальпии связывания лиганд-белок и найдены коэффициенты корреляции с экспериментом для результатов расчетов в комплексе MOPAC. Приведены результаты использования комплекса MOPAC в разработке новых ингибиторов урокиназы.


Загрузки

Опубликован

2014-04-23

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

Е.В. Каткова

ООО «Димонта»
ул. Нагорная, 15-8, 117186, Москва
• младший научный сотрудник

И.В. Офёркин

В.Б. Сулимов


Библиографические ссылки

  1. Садовничий В.А., Сулимов В.Б. Суперкомпьютерные технологии в медицине // Суперкомпьютерные технологии в науке, образовании и промышленности / Под ред. В.А. Садовничего, Г.И. Савина, Вл.В. Воеводина. М: Изд-во Моск. ун-та, 2009. 16-23.
  2. Sinauridze E.I., Romanov A.N., Gribkova I.V., Kondakova O.A., Surov S.S., Gorbatenko A.S., Butylin A.A., Monakov M.Yu., Bogolyubov A.A., Kuznetsov Yu.V., Sulimov V.B., Ataullakhanov F.I. New synthetic thrombin inhibitors: molecular design and experimental verification // PLoS ONE. 2011. 6, N 5. Article No. e19969.
  3. Chen W., Gilson M.K., Webb S.P., Potter M.J. Modeling protein-ligand binding by mining minima // J. Chem. Theory Comput. 2010. 6, N 11. 3540-3557.
  4. Wang R., Lu Y., Wang S. Comparative evaluation of 11 scoring functions for molecular docking // J. Med. Chem. 2003. 46, N 12. 2287-2303.
  5. Grzybowski B.A., Ishchenko A.V., Shimada J., Shakhnovich E.I. From knowledge-based potentials to combinatorial lead design in silico // Acc. Chem. Res. 2002. 35, N 5. 261-269.
  6. Halperin I., Ma B., Wolfson H., Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions // Proteins. 2002. 47, N 4. 409-443.
  7. Taylor R.D., Jewsbury P.J., Essex J.W. A review of protein-small molecule docking methods // J. Comput.-Aided Mol. Des. 2002. 16, N 3. 151-166.
  8. Gohlke H., Klebe G. Statistical potentials and scoring functions applied to protein-ligand binding // Curr. Opin. Struct. Biol. 2001. 11, N 2. 231-235.
  9. Pérez C., Ortiz A.R. Evaluation of docking functions for protein-ligand docking // J. Med. Chem. 2001. 44, N 23. 3768-3785.
  10. Muegge I., Rarey M. Small molecule docking and scoring // Reviews in Computational Chemistry. Vol. 17. New York: Wiley, 2001. 1-60.
  11. Ehrlich L.P., Wade R.C. Protein-protein docking // Reviews in Computational Chemistry. Vol. 17. New York: Wiley, 2001. 61-97.
  12. Jorgensen W.L. Free energy calculations: a breakthrough for modeling organic chemistry in solution // Acc. Chem. Res. 1989. 22, N 5. 184-189.
  13. Kollman P. Free energy calculations: applications to chemical and biochemical phenomena // Chem. Rev. 1993. 93, N 7. 2395-2417.
  14. Aqvist J., Medina C., Samuelsson J.-E. A new method for predicting binding affinity in computer-aided drug design // Protein Eng. 1994. 7, N 3. 385-391.
  15. Srinivasan J., Cheatham T.E., Cieplak P., Kollman P.A., Case D.A. Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices // J. Am. Chem. Soc. 1998. 120, N 37. 9401-9409.
  16. Kollman P.A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W., Donini O., Cieplak P., Srinivasan J., Case D.A., Cheatham T.E. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models // Acc. Chem. Res. 2000. 33, N 12. 889-897.
  17. Stewart J.J. P. MOPAC: a semiempirical molecular orbital program // J. Comput.-Aided Mol. Des. 1990. 4, N 1. 1-103.
  18. Stewart J.J. P. MOPAC2012 (http://OpenMOPAC.net).
  19. Halgren T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 // J. Comput. Chem. 1996. 17, N 5/6. 490-519.
  20. Stewart J.J. P. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations // Int. J. Quant. Chem. 1996. 58, N 2. 133-146.
  21. Dewar M.J. S., Zoebisch E.G., Healy E.F., Stewart J.J. P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical model // J. Am. Chem. Soc. 1985. 107, N 13. 3902-3909.
  22. Stewart J.J. P. Optimization of parameters for semiempirical methods I. Method // J. Comp. Chem. 1989. 10, N 2. 209-220.
  23. Stewart J.J. P. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements // J. Mol. Modeling. 2007. 13, N 12. 1173-1213.
  24. Rocha G.B., Freire R.O., Simas A.M., Stewart J.J. P. RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I // J. Comp. Chem. 2006. 27, N 10. 1101-1111.
  25. Stewart J.J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters // J. Mol. Modeling. 2013. 19, N 1. 1-32.
  26. Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections // J. Comput. Chem. 2004. 25, N 12. 1463-1473.
  27. Jureucka P., uCern’y J., Hobza P., Salahub D.R. Density functional theory augmented with an empirical dispersion term: interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations // J. Comput. Chem. 2007. 28, N 2. 555-569.
  28. checkRezacuteacheckc J., Hobza P. A halogen-bonding correction for the semiempirical PM6 method // Chem. Phys. Lett. 2011. 506, N 4-6. 286-289.
  29. checkRezacuteacheckc J., Fanfrlik J., Salahub D., Hobza P. Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes // J. Chem. Theory Comput. 2009. 5, N 7. 1749-1760.
  30. Korth M., Pitochecknacuteak M., checkRezacuteacheckc J., Hobza P. A transferable H-bonding correction for semiempirical quantum-chemical methods // J. Chem. Theory Comput. 2010. 6, N 1. 344-352.
  31. Korth M. Third-generation hydrogen-bonding corrections for semiempirical QM methods and force fields // J. Chem. Theory Comput. 2010. 6, N 12. 3808-3816.
  32. Oferkin I.V., Katkova E.V., Sulimov V.B. Direct generalized docking program FLM: protein-ligand binding free energy calculations by multiwell approximation // Journal of Chemical Information and Modeling. 2014 (submitted).
  33. Duffy M.J. The urokinase plasminogen activator system: role in malignancy // Curr. Pharm. Des. 2004. 10, N 1. 39-49.
  34. Choong P.F. M., Nadesapillai A.P. W. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis // Clin. Orthop. Relat. Res. 2003. 415. S46-S58.
  35. Blasi F., Carmeliet P. uPAR: a versatile signalling orchestrator // Nat. Rev. Mol. Cell Biol. 2002. 3, N 12. 932-943.
  36. Ulisse S., Baldini E., Sorrenti S., D’Armiento M. The urokinase plasminogen activator system: a target for anti-cancer therapy // Current Cancer Drug Targets. 2009. 9, N 1. 32-71.
  37. The Protein Data Bank (http://www.rcsb.org/).
  38. Sulimov A.V., Kutov D.C., Oferkin I.V., Katkova E.V., Sulimov V.B. Application of the docking program SOL for CSAR Benchmark // J. Chem. Inf. Model. 2013. 53, N 8. 1946-1956.
  39. Романов А.Н., Кондакова О.А., Григорьев Ф.В., Сулимов A.В., Лущекина С.В., Мартынов Я.Б., Сулимов В.Б. Компьютерный дизайн лекарственных средств: программа докинга SOL // Вычислительные методы и программирование. 2008. 9. 213-233.
  40. Офёркин И.В., Сулимов А.В., Кондакова О.А., Сулимов В.Б. Реализация поддержки параллельных вычислений в программах докинга SOLGRID и SOL // Вычислительные методы и программирование. 2011. 12. 9-23.
  41. Купервассер О.Ю., Жабин С.Н., Мартынов Я.Б., Федулов К.М., Офёркин И.В., Сулимов А.В., Сулимов В.Б. Континуальная модель растворителя: программа DISOLV - алгоритмы, реализация и валидация // Вычислительные методы и программирование. 2011. 12. 247-261.
  42. Михалев А.Ю., Офёркин И.В., Оселедец И.В., Сулимов А.В., Тыртышников Е.Е., Сулимов В.Б. Применение мультизарядового приближения больших плотных матриц в рамках модели поляризуемого континуума для растворителя // Вычислительные методы и программирование. 2014. 15. 9-21.