Структура устойчивого многообразия полностью неявных схем

Авторы

  • Э.Ю. Ведерникова
  • А.А. Корнев

Ключевые слова:

стабилизация
численные алгоритмы
неявные разностные схемы

Аннотация

Получен аналог теоремы Адамара-Перрона о существовании локального устойчивого многообразия в окрестности неподвижной точки гиперболического типа для неявно заданных отображений. В том числе, данный результат позволяет конструктивно исследовать структуру многообразия для конечно-разностной аппроксимации по времени для квазилинейных уравнений параболического типа и показать, что в смысле интегральной метрики многообразие нелинейной задачи существует в неограниченном эллипсоиде. Приводятся теоретические оценки и результаты численных расчетов. Работа выполнена при финансовой поддержке РФФИ (грант № 12-01-00960).


Загрузки

Опубликован

2013-01-28

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

Э.Ю. Ведерникова

А.А. Корнев


Библиографические ссылки

  1. Аносов Д.В. Геодезические потоки на замкнутых римановых многообразиях отрицательной кривизны // Тр. матем. ин-та им. В.,А. Стеклова. 1967. 90, № 5. 3-210.
  2. Kostin I.N. Rate of attraction to a non-hyperbolic attractor // Asymptotic Analysis. 1998. 16, N 3/4. 203-222.
  3. Ладыженская О.А., Солонников В.А. О принципе линеаризации и инвариантных многообразиях для задач магнитной гидродинамики // Зап. научн. семин. ЛОМИ. 1973. 38. 46-93.
  4. Лебедев В.И. Функциональный анализ и вычислительная математика. М.: Физматлит, 2005.
  5. Иванчиков А.А., Корнев А.А., Озерицкий А.В. О новом подходе к решению задач асимптотической стабилизации // Журн. вычислит. матем. и матем. физики. 2009. 49, № 12. 2167-2181.
  6. Fursikov A.V. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations // Discrete and Continuous Dynamical Systems. Series S. 2010. 3, № 2. 269-290.
  7. Fursikov A.V., Kornev A.A. Feedback stabilization for Navier-Stokes equations: theory and calculations // Mathematical Aspects of Fluid Mechanics. Lecture Notes Series. Cambridge: Cambridge University Press, 2012. 130-172.
  8. Чижонков Е.В. Об операторах проектирования для численной стабилизации // Вычислительные методы и программирование. 2004. 5, № 1. 161-169.
  9. Милютин С.В., Чижонков Е.В. О двух методах приближенного проектирования на устойчивое многообразие // Вычислительные методы и программирование. 2007. 8, № 1. 177-182.