Параллельный программный комплекс NOISETTE для крупномасштабных расчетов задач аэродинамики и аэроакустики

Авторы

  • И.В. Абалакин
  • А.В. Горобец
  • А.П. Дубень
  • Т.К. Козубская
  • П.А. Бахвалов

Ключевые слова:

газовая динамика
аэроакустика
аэродинамика
параллельные вычисления
MPI
OpenMP

Аннотация

Представлен программный комплекс NOISEtte, основанный на схемах повышенной точности с определением переменных в узлах неструктурированных сеток, который позволяет моделировать задачи газовой динамики и аэроакустики с использованием десятков тысяч процессорных ядер суперкомпьютера. Приводится обзор лежащих в основе численных методов и моделей, включающий в себя пространственную дискретизацию, интегрирование по времени, модели турбулентности и модели дальнего поля. Подробно описаны особенности программной реализации. Большое внимание уделяется распараллеливанию в рамках двухуровневой модели MPI+OpenMP.


Загрузки

Опубликован

2012-10-08

Выпуск

Раздел

Раздел 2. Программирование

Авторы

И.В. Абалакин

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• старший научный сотрудник

А.В. Горобец

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• старший научный сотрудник

А.П. Дубень

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• младший научный сотрудник, аспирант

Т.К. Козубская

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• заведующий сектором

П.А. Бахвалов

Московский физико-технический институт (МФТИ)
Институтский пер., 9, 141701, Долгопрудный
• старший научный сотрудник


Библиографические ссылки

  1. Singer B.A., Guo Y. Development of computational aeroacoustics tools for airframe noise calculations // Int. J. of Computational Fluid Dynamics. 2004. 18, N 6. 455-469.
  2. Abalakin I., Dervieux A., Kozubskaya T. Computational study of mathematical models for noise DNS // AIAA Paper 2002-2585. 2002.
  3. Abalakin I., Dervieux A., Kozubskaya T. High accuracy finite volume method for solving nonlinear aeroacoustics problems on unstructured meshes // Chinese J. of Aeronautics. 2006. 19, N 2. 97-104.
  4. Vos J.B., Rizzi A., Darracq D., Hirschel E.H. Navier-Stokes solvers in European aircraft design // Progress in Aerospace Sciences. 2002. 38, N 8. 601-697.
  5. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows // 30th Aerospace Science Meeting, Reno, Nevada, 1992. AIAA Paper 92-0439, 1992.
  6. Haase W., Braza M., Revell A. DESider - A European effort on hybrid RANS-LES modelling. Berlin: Springer, 2009.
  7. Волков К.Н., Емельянов В.Н. Моделирование крупных вихрей в расчетах турбулентных течений. М.: Физматлит, 2008.
  8. Spalart P.R., Deck S., Shur M., Squires K., Strelets M., Travin A. A new version of detached-eddy simulation, resistant to ambiguous grid densities // Theor. Comput. Fluid Dyn. 2006. 20, N 3. 181-195.
  9. Shur M., Spalart P.R., Strelets M., Travin A. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities // Int. J. of Heat and Fluid Flow. 2008. 29, N 6. 1638-1649.
  10. Бахвалов П.А., Козубская Т.К., Корнилина Е.Д., Морозов А.В., Якобовский М.В. Технология расчета акустических возмущений в дальнем поле течения // Матем. моделирование. 2011. 23, № 11. 33-47.
  11. Barth T. Numerical methods for conservation laws on structured and unstructured meshes // VKI for Fluid Dynamics. Lectures series. 2003-03. Sint-Genesius-Rode, Belgium: von Karman Institute of Fluid Dynamics, 2003.
  12. Флетчер K. Численные методы на основе метода Галеркина. М.: Мир, 1988.
  13. Roe P.L. Approximate Riemann solvers, parameter vectors and difference schemes // J. Comput. Phys. 1981. 43, N 2. 357-372.
  14. Huang L.C. Pseudo-unsteady difference schemes for discontinuous solution of steady-state. One-dimensional fluid dynamics problems // J. Comput. Phys. 1981. 42, N 1. 195-211.
  15. Абалакин И.В., Козубская Т.К. Многопараметрическое семейство схем повышенной точности для линейного уравнения переноса // Матем. моделирование. 2007. 19, № 7. 56-66.
  16. Saad Y. Iterative methods for sparse linear systems. Second Edition. Philadelphia: SIAM, 2003.
  17. Hirsch Ch. Numerical computation of internal and external Flows. Vol. 2: Computational Methods for Inviscid and Viscous Flows. New York: Wiley, 1990.
  18. Tam C.K. W., Webb J.C. Dispersion-relation-preserving finite difference schemes for computational acoustics // J. Comput. Phys. 1993. 107, N 2. 262-281.
  19. Schloegel K., Karypis G., Kumar V. Parallel static and dynamic multi-constraint graph partitioning // Concurrency and Computation: Practice and Experience. 2002. 14, N 3. 219-240.
  20. Головченко Е.Н. Параллельный пакет декомпозиции больших сеток // Матем. моделирование. 2011. 23, № 10. 3-18.
  21. Gorobets A.V., Abalakin I.V., Kozubskaya T.K. Technology of parallelization for 2D and 3D CFD/CAA codes based on high-accuracy explicit methods on unstructured meshes // Parallel Computational Fluid Dynamics 2007. Lecture Notes in Computational Science and Engineering. Vol. 67. Berlin: Springer, 2009. 253-260.
  22. Aubry R., Houzeaux G., Vazquez M., Cela J.M. Some useful strategies for unstructured edge-based solvers on shared memory machines // Int. J. Numer. Meth. Engng. 2011. 85, N 5. 537-561.
  23. Dervieux A., Debiez C. Mixed element volume MUSCL methods with weak viscosity for steady and unsteady flow calculation // Computer and Fluids. 1999. 29, N 1. 89-118.
  24. Савин Г.И., Четверушкин Б.Н., Суков С.А., Горобец А.В., Козубская Т.К., Вдовикин О.И., Шабанов Б.М. Моделирование задач газовой динамики и аэроакустики с использованием ресурсов суперкомпьютера МВС-100К // Докл. РАН. 2008. 423, № 3. 312-315.
  25. Kopiev V., Abalakin I., Faranosov G., Gorobets A., Kozubskaya T., Ostrikov N., Zaitsev M. Experimental and numerical localization of noise sources for cylinder in round jet // Proc. of Trilateral Russian-French-German Workshop on Computational Experiment In Aeroacoustics. Svetlogorsk, September 22-25, 2010. Moscow: MAKS Press, 2010. 75-78.
  26. Crighton D.G., Dowling A.P., Ffowcs Williams J.E., Heckl M.A., Leppington F.A. Modern methods in analytical acoustics. Berlin: Springer, 1992.
  27. Morris P.J. Scattering of sound by a sphere: category 1: problems 3 and 4 // Proc. of Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. NASA Conference Publication 3352. Hampton: Langley Research Center, 1997. 15-17.
  28. Karabasov S.A., Kopiev V.F., Goloviznin V.M. On a classical problem of acoustic wave scattering by a free vortex: numerical modelling // Proc. 15th AIAA/CEAS Aeroacoustics Conference, Miami, FL, 11-13 May 2009. AIAA Paper 2009-3234, 2009.
  29. Colonius T., Lele S.K., Moin P. The scattering of sound waves by a vortex: numerical simulations and analytical solutions // J. Fluid Mech. 1994. 260. 271-298.
  30. Жмакин А.И., Фурсенко А.А. Об одной монотонной разностной схеме сквозного счета // Ж. вычисл. матем и матем. физ. 1980. 20, № 4. 1021-1031.
  31. Woodward P., Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks // J. Comput. Phys. 1984. 54, N 1. 115-173.
  32. Du X., Corre C., Lerat A. A third-order finite-volume residual-based scheme for the 2D Euler equations on unstructured grids // J. Comput. Phys. 2011. 230, N 11. 4201-4215.
  33. Bunge U., Mockett C., Thiele F. Guidelines for implementing detached-eddy simulation using different models // Aerospace Science and Technology. 2007. 11, N 5. 376-385.
  34. Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003.
  35. Schmitt V., Charpin F. Pressure distributions on the ONERA-M6-Wing at transonic Mach numbers. Experimental data base for computer program assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138. 1979.
  36. Vassberg J.C., DeHaan M.A., Rivers S.M., Wahls R.A. Development of a common research model for applied CFD validation studies. AIAA Paper 2008-6919, 2008.
  37. Дубень А.П., Козубская Т.К., Миронов М.А. Численное исследование резонаторов в волноводе // Изв. РАН. Механ. жидкости и газа. 2012. № 1. 146-156.