Решение уравнения Бакли-Леверетта со случайным коэффициентом пористости

Авторы

  • А.В. Исаева
  • М.Л. Сердобольская

Ключевые слова:

уравнение Бакли-Леверетта
геостатистика
гибридные разностные схемы

Аннотация

Рассмотрено уравнение Бакли-Леверетта со случайным коэффициентом пористости. Для анализа уравнения использована комбинация аналитического (метод характеристик) и численного (ориентированные против потока и гибридные разностные схемы) подходов. Получено явное выражение для стохастических характеристик уравнения, построены оценки ряда важных параметров задачи. Аналитические оценки сопоставлены с результатами численных расчетов.


Загрузки

Опубликован

2012-11-01

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

А.В. Исаева

М.Л. Сердобольская


Библиографические ссылки

  1. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. M.: Недра, 1984.
  2. Trangenstein J.A. Numerical solution of hyperbolic partial differential equations. Cambridge: Cambridge Univ. Press, 2007.
  3. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. 1. М.: Мир, 1990.
  4. Петров И.Б., Лобанов А.И. Лекции по вычислительной математике. М.: БИНОМ, 2006.
  5. LeVeque R.J. Finite-volume methods for hyperbolic problems. Cambridge: Cambridge Univ. Press, 2004.
  6. Zhang D., Tchelepi H. Stochastic analysis of immiscible two-phase flow in heterogeneous media // SPE Journal. 1999. 4, N 4. 380-388.
  7. Li H., Zhang D. Efficient and accurate quantification of uncertainty for multiphase flow with the probabilistic collocation method // SPE Journal. 2009. 14, N 4. 665-679.
  8. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981.
  9. Amyx A., Bass D., Whiting R. Petroleum reservoir engineering. New York: McGraw-Hill, 1960.
  10. Deutsch C.V. Geostatistical reservoir modeling. Oxford: Oxford Univ. Press, 2002.