Метод решения обратной задачи восстановления функции распределения размеров частиц аэрозоля в атмосфере на множестве кусочно-выпкулых функций

Авторы

  • Я. Ван
  • Д.В. Лукьяненко
  • А.Г. Ягола
  • Е. Чжан

Ключевые слова:

функция распределения размеров частиц аэрозоля в атмосфере
интегральные уравнения Фредгольма первого рода
метод проекции сопряженных градиентов
кусочно-выпуклые функции

Аннотация

Рассматривается решение важной практической задачи восстановления функции распределения размеров частиц аэрозоля в атмосфере по измеренным значениям коэффициента поглощения различных длин волн излучения. Эта задача сводится к интегральному уравнению Фредгольма первого рода, для решения которого применяется алгоритм, основанный на минимизации функционала невязки методом сопряженных градиентов с проекцией на множество априорных ограничений. Ограничения выбираются в виде кусочно-выпуклых функций исходя из физических особенностей искомого решения. Предлагается эффективная схема регуляризации задач такого типа, множеством решений которых являются кусочно-выпуклые функции, показывается эффективность данного подхода. Работа выполнена при финансовой поддержке РФФИ (коды проектов 11-01-00040 и 10-01-91150-ГФЕН).


Загрузки

Опубликован

2012-01-10

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

Я. Ван

Институт геологии и геофизики Китайской академии наук
Beitucheng Western Road, 19, 100029, Beijing, China
• профессор

Д.В. Лукьяненко

Московский государственный университет имени М.В. Ломоносова,
физический факультет
Ленинские горы, 119234, Москва
• младший научный сотрудник

А.Г. Ягола

Е. Чжан

Институт геологии и геофизики Китайской академии наук
Beitucheng Western Road, 19, 100029, Beijing, China
• аспирант


Библиографические ссылки

  1. Houghton J.T., Meira Filho L.G., Callander B.A., Harris N., Kattenberg A., Maskell K. Climate change 1995. Cambridge: Cambridge University Press, 1995.
  2. Junge C.E. The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere // J. Meteor. 1955. N 12. 13-25.
  3. Deirmendjian D. Electromagnetic scattering on spherical polydispersions. New York: Elsevier, 1969.
  4. Heintzenberg J. Properties of Log-normal particle size distributions // Aerosol Sci. Tech. 1994. N 21. 46-48.
  5. Woodcock A.H. Salt nuclei in marine air as a function of altitude and wind force // J. Meteor. 1953. N 10. 362-371.
  6. Twomey S. Atmospheric aerosols. Amsterdam: Elsevier, 1977.
  7. Bohren G.F., Huffman D.R. Absorption and scattering of light by small particles. New York: Wiley, 1983.
  8. Angström A.A. On the atmospheric transmission of Sun radiation and on dust in the air // Geografiska Annaler. 1929. N 11. 156-166.
  9. King M.D., Byrne D.M., Herman B.M., Reagan J.A. Aerosol size distributions obtained by inversion of spectral optical depth measurements // J. Atmos. Sci. 1978. N 35. 2153-2167.
  10. Stratton J.A. Electromagnetic theory. New York: McGraw-Hill, 1941.
  11. Twomey S. Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distribution // J. Comput. Phys. 1975. N 18. 188-200.
  12. Bockmann C., Kirsche A. Iterative regularization method for lidar remote sensing // Computer Physics Communications. 2006. N 174. 607-615.
  13. Voutilainenand A., Kaipio J.P. Statistical inversion of aerosol size distribution data // J. Aerosol Sci. 2000. N 31. 767-768.
  14. Wang Y.F., Fan S.F., Feng X. Retrieval of the aerosol particle size distribution function by incorporating a priori information // J. of Aerosol Science. 2007. N 38. 885-901.
  15. Иванов В.К., Васин В.В., Танана В.П. Теория линейных некорректных задач и ее приложения. М.: Наука, 1978.
  16. Танана В.П. Методы решения операторных уравнений. М.: Наука, 1981.
  17. Тихонов А.Н., Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи. М.: Наука, 1995.
  18. Николаева Н.Н., Титаренко В.Н., Ягола А.Г. Оценка погрешности решения уравнения Абеля на множествах монотонных и выпуклых функций // Сибирский журнал вычислительной математики. 2003. 6. 171-180.
  19. Карманов В.Г. Математическое программирование. М.: Наука, 1986.
  20. Экланд И., Темам Р. Выпуклый анализ и вариационные проблемы. М.: Мир, 1979.
  21. Магарил-Ильяев Г.Г., Тихомиров В.М. Выпуклый анализ и его приложения. М.: Эдиториал УРСС, 2000.
  22. Васильев Ф.П., Иваницкий А.Ю. Линейное программирование. М.: Изд-во «Факториал», 1998.
  23. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to algorithms. New York: McGraw-Hill, 2002.
  24. Гончарский А.В., Леонов А.С., Ягола А.Г. Обобщенный принцип невязки // Журн. вычисл. матем. и матем. физ. 1973. 13, № 2. 294-302.
  25. Морозов В.А. Регулярные методы решения некорректно поставленных задач. М.: Наука, 1987.
  26. Леонов А.С. Псевдооптимальный выбор параметра в методе регуляризации // Журн. вычисл. матем. и матем. физ. 1995. 35, № 7. 1034-1049.