Реализация поддержки параллельных вычислений в программах докинга SOLGRID и SOL
Авторы
-
И.В. Офёркин
-
А.В. Сулимов
-
О.А. Кондакова
-
В.Б. Сулимов
Ключевые слова:
докинг
высокопроизводительные вычисления
интерфейс передачи сообщений
Аннотация
Рассмотрены схемы реализации и получившиеся эффективности для нескольких вариантов докинга одного лиганда с использованием параллельных вычислений. В качестве программ, для которых реализовывались параллельные версии, были выбраны программы SOLGRID и SOL. Тестирование проводилось на кластерном суперкомпьютере СКИФ МГУ «Чебышёв». Для реализации параллельности вычислений использовался MPI. Данная работа выполнена в рамках проведения научно-исследовательских работ по пост-геномным исследованиям и технологиям МГУ им. М.В. Ломоносова и выполнения работ по госконтракту 02.740.11.0388 по теме «Суперкомпьютерные технологии для решения задач обработки, хранения, передачи и защиты информации», а также частично поддержана грантами РФФИ (коды проектов № 09-01-12097_офи-м, № 10-07-00595-а).
Раздел
Раздел 2. Программирование
Авторы
А.В. Сулимов
ООО «Димонта»
ул. Нагорная, 15-8, 117186, Москва
• системный программист
Библиографические ссылки
- Садовничий В.А., Сулимов В.Б. Суперкомпьютерные технологии в медицине // Суперкомпьютерные технологии в науке, образовании и промышленности / Под ред. В.А. Садовничего, Г.И. Савина, Вл.В. Воеводина. М: Изд-во Моск. ун-та, 2009. 16-23.
- Zoete V., Grosdidier A., Michielin O. Docking, virtual high throughput screening and in silico fragment-based drug design // J. Cell. Mol. Med. 2009. 13. 238-248.
- Klebe G. Virtual ligand screening: strategies, perspectives and limitations // Drug Disc. Today. 2006. 11. 580-594.
- Wlodawer A., Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design // Annu. Rev. Biophys. Biomol. Struct. 1998. 27. 249-284.
- Tarle I., Borhani D.W., Wilson D.K., Quiocho F.A., Petrash J.M. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110 // J. Biol. Chem. 1993. 268, N 34. 25687-25693.
- Lin J.H., Perryman A.L., Schames J.R., McCammon J.A. Computational drug design accommodating receptor flexibility: the relaxed complex scheme // J. Am. Chem. Soc. 2002. 124, N 20. 5632-5633.
- Erickson J.A., Jalaie M., Robertson D.H., Lewis R.A., Vieth M. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy // J. Med. Chem. 2004. 47, N 1. 45-55.
- Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R., Ferrin T.E. A geometric approach to macromolecule-ligand interactions // J. Mol. Biol. 1982. 161. 269-288.
- Chen R., Weng Z. A novel shape complementarity scoring function for protein-protein docking // Proteins. 2003. 51, N 3. 397-408.
- Ritchie D.W., Kozakov D., Vajda S. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions // Bioinformatics. 2008. 24, N 17. 1865-1873.
- Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function // J. Comput. Chem. 1998. 19. 1639-1662.
- Huey R., Morris G.M., Olson A.J., Goodsell D.S. A semiempirical free energy force field with charge-based desolvation // J. Comput. Chem. 2007. 28. 1145-1152.
- Ewing T.J., Makino S., Skillman A.G., Kuntz I.D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases // J. Comput. Aided Mol. Des. 2001. 15. 411-428.
- Abagyan R., Totrov M., Kuznetsov D. ICM - a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation // J. Comput. Chem. 1994. 15. 488-506.
- Jones G., Willett P., Glen R.C., Leach A.R., Taylor R. Development and validation of a genetic algorithm for flexible docking // J. Mol. Biol. 1997. 267. 727-748.
- Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D. Improved protein-ligand docking using GOLD // Proteins. 2003. 52. 609-623.
- Романов А.Н., Кондакова О.А., Григорьев Ф.В., Сулимов А.В., Лущекина С.В., Мартынов Я.Б., Сулимов В.Б. Компьютерный дизайн лекарственных средств: программа докинга SOL // Вычислительные методы и программирование. 2008. 9, № 2. 64-84.
- Cavasotto C.N., Abagyan R.A. Protein flexibility in ligand docking and virtual screening to protein kinases // J. Mol. Biol. 2004. 337. 209-225.
- Rarey M., Kramer B., Lengauer T., Klebe G. A fast flexible docking method using an incremental construction algorithm // J. Mol. Biol. 1996. 261. 470-489.
- Claussen H., Buning C., Rarey M., Lengauer T. FlexE: efficient molecular docking considering protein structure variations // J. Mol. Biol. 2001. 308. 377-395.
- Sousa S.F., Fernandes P.A., Ramos M.J. Protein-ligand docking: current status and future challenges // Proteins. 2006. 65. 15-26.
- Halperin I., Ma B., Wolfson H., Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions // Proteins. 2002. 47, N 4. 409-443.
- Aqeel A., Sina K., Holger G. Protein flexibility and mobility in structure-based drug design // Frontiers in Drug Design &; Discovery. 2007. 3. 455-476.
- Sheng-You Huang, Xiaoqin Zou. Advances and challenges in protein-ligand docking // Int. J. Mol. Sci. 2010. 11. 3016-3034.
- Miller M.D., Kearsley S.K., Underwood D.J., Sheridan R.P. FLOG: a system to select «quasi-flexible» ligands complementary to a receptor of known three-dimensional structure // J. Comput. Aided Mol. Des. 1994. 8, N 2. 153-174.
- Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., Shaw D.E., Francis P., Shenkin P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy // J. Med. Chem. 2004. 47. 1739-1749.
- Halgren T.A., Murphy R.B., Friesner R.A., Beard H.S., Frye L.L., Pollard W.T., Banks J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening // J. Med. Chem. 2004. 47. 1750-1759.
- Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes // J. Med. Chem. 2006. 49. 6177-6196.
- Goldberg D.E. Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley, 1989.
- Goldberg D.E. Real-coded genetic algorithm, virtual alphabets, and blocking // Complex systems. 1991. 5. 139-167.
- Konfrst Z. Parallel genetic algorithms: advances, computing trends, applications and Perspectives // Proc. 18th Int. Parallel and Distributed Processing Symposium (IPDPS’04). Workshop 6. 26-30 April 2004. New Mexico. USA. 7, 162. Santa Fe, 2004.
- Thomsen R., Christensen M.H. MolDock: a new technique for high-accuracy molecular docking // J. Med. Chem. 2006. 49. 3315-3321.
- McMartin C., Bohacek R.S. QXP: powerful, rapid computer algorithms for structurebased drug design // J. Comput. Aided Mol. Des. 1997. 11. 333-344.
- Namasivayam V., Gunther R. pso@autodock: a fast flexible molecular docking program based on swarm intelligence // Chem. Biol. Drug Des. 2007. 70, N 6. 475-484.
- Chen H.M., Liu B.F., Huang H.L., Hwang S.F., Ho S.Y. SODOCK: swarm optimization for highly flexible protein-ligand docking // J. Comput. Chem. 2007. 28, N 2. 612-623.
- Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing // Science. 1983. 220, N 4598. 671-680.
- Dias R., de Azevedo W.F. Molecular docking algorithms // Curr. Drug Targets. 2008. 9, N 12. 1040-1047.
- Bursulaya B.D., Totrov M., Abagyan R., Brooks C.L. Comparative study of several algorithms for flexible ligand docking // J. Comput. Aided Mol. Des. 2003. 17, N 11. 755-763.
- Wang R., Wang S. How does consensus scoring work for virtual library screening? An idealized computer experiment // J. Chem. Inf. Comput. Sci. 2001. 41, N 5. 1422-1426.
- Teramoto R., Fukunishi H. Supervised consensus scoring for docking and virtual screening // J. Chem. Inf. Model. 2007. 47, N 2. 526-534.
- Congreve M., Chessari G., Tisi D., Woodhead A.J. Recent developments in fragment-based drug discovery // J. Med. Chem. 2008. 51, N 13. 3661-3680.
- Pegg S.C., Haresco J.J., Kuntz I.D. A genetic algorithm for structure-based de novo design // J. Comput. Aided Mol. Des. 2001. 15, N 10. 911-933.
- Moustakas D.T., Lang P.T., Pegg S., Pettersen E., Kuntz I.D., Brooijmans N., Rizzo R.C. Development and validation of a modular, extensible docking program: DOCK 5 // J. Comput. Aided Mol. Des. 2006. 20, N 10-11. 601-619.
- Levesque M.J., Ichikawa K., Date S., Haga J.H. Design of a grid service-based platform for in silico protein-ligand screenings // Comput. Methods Programs Biomed. 2009. 93, N 1. 73-82.
- Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility // J. Comput. Chem. 2009. 30. 2785-2791.
- FightAIDS@Home (http://fightaidsathome.scripps.edu).
- Discover Dengue Drugs-Together (http://www.worldcommunitygrid.org/research/dddt/overview.do).
- Zhang Sh., Kumar K., Jiang X., Wallqvist A., Reifman J. DOVIS: an implementation for high-throughput virtual screening using AutoDock // BMC Bionformatics 8. 2008. 126-129.
- Zhang Sh., Kumar K., Hu X., Wallqvist A., Reifman J. DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0 // Chem. Central J. 2008. 2. 18-24.
- Vistoli G., Pedretti A., Mazzolari A., Testa B. Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: a parallelized tool based on AutoDock 4.0 // J. Comput. Aided Mol. Des. 2010. 24, N 9. 771-787.
- Morris G.M., Goodsell D.S., Huey R., Olson A.J. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4 // J. Comput. Aided Mol. Des. 1996. 10, N 4. 293-304.
- Prakhov N.D., Chernorudskiy A.L., Gainullin M.R. VSDocker: a tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters // Bioinformatics. 2010. 26. 1374-1375.
- Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading // J. Comput. Chem. 2010. 31, N 2. 455-461.
- Chang M.W., Ayeni C., Breuer S., Torbett B.E. Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina // PLoS One. 2010. 5, N 8. e11955.
- Khodade P., Prabhu R., Chandra N., Rahab S., Govindarajanb R. Parallel implementation of AutoDock // J. Appl. Cryst. 2007. 40. 598-599.
- Micevski D. Optimizing Autodock with CUDA. Victorian Partnership For Advanced Computing Ltd, 2009.
- http://gpuautodock.sourceforge.net/
- Halgren T.A. Merck Molecular Force Field. I. Basis, form, scope, parametrization and performance of MMFF94 // J. Comput. Chem. 1996. Т. 5&;6. 490-519; 520-552; 553-586; 587-615; 616-641.
- Ghosh A., Rapp C.S., Friesner R.A. Generalized Born Model Based on a Surface Integral Formulation // J. Phys. Chem. B. 1998. 102. 10983-10990.
- Romanov A.N., Jabin S.N., Martynov Y.B., Sulimov A.V., Grigoriev F.V., Sulimov V.B. Surface Generalized Born method: a simple, fast and precise implicit solvent model beyond the Coulomb approximation // J. Phys. Chem. A. 2004. 108. 9323-9327.