О систематизации вейвлет-преобразований
Ключевые слова:
вейвлет-преобразования
численный анализ
численные методы
обрабатка сигналов
вейвлеты
дискретные преобразования
вейвлет-анализ
Аннотация
В работе делается попытка систематизировать наиболее распространенные на сегодняшний день разновидности вейвлет-преобразования. Предлагается систематизация по следующим признакам: по типу (дискретному или непрерывному) обрабатываемого сигнала, по размерности сигнала, по наличию или отсутствию избыточной информации, наличию или отсутствию свойства сохранения нормы и др. Проводится сравнение принятых способов обработки сигналов, определенных на конечных интервалах, а также известных форм записи преобразований.
Библиографические ссылки
- Бердышев В.И., Петрак Л.В. Аппроксимация функций, сжатие численной информации, приложения. Екатеринбург: УрО РАН, 1999.
- Левкович-Маслюк Л.И. Дайджест вейвлет-анализа в двух формулах и 22 рисунках // Компьютерра. 1998. № 8,(236). 31-37.
- Новиков И.Я., Стечкин С.Б. Основные конструкции всплесков // Фундаментальная и прикладная математика. 1997. 3, № 4. 999-1028.
- Переберин А.В. Построение изолиний с автоматическим масштабированием // Вычислительные методы и программирование. 2001. 2, № 1. 118-128.
- Петухов А.П. Введение в теорию базисов всплесков. СПб.: Изд-во СПбГТУ, 1999.
- Bonneau G.-P., Hahmann S., Nielson G.M. BLaC-wavelets: a multiresolution analysis with non-nested spaces // IEEE Visualization’96 Proceedings. 1996. 43-48.
- Chui C.K. An introduction to wavelets. New York: Academic Press, 1992.
- Chui C.K. (Editor) Wavelets: a tutorial in theory and applications. New York: Academic Press, 1992.
- Chui C.K., Quak E. Wavelets on a bounded interval // Numerical Methods in Approximation Theory. 1992. 9. 53-75.
- Coifman R.R., Meyer Y., Wickerhauser V. Wavelet analysis and signal processing wavelets // Wavelets and their applocations. Boston: Jones and Barlett, 1992. 153-178.
- Daubechies I. Ten lectures on wavelets. Philadelphia: SIAM, 1992.
- Daubechies I., Sweldens W. Factoring wavelet transforms into lifting steps // IEEE Trans. Image Processing. 2000. 9, N 3. 480-496 (http://cm.bell-labs.com/who/wim/papers/).
- Finkelstein A., Salesin D.H. Multiresolution curves // SIGGRAPH’94 Proceedings. 1994. 261-268.
- Gross M.H., Staadt O.G., Gatti R. Efficient triangular surface approximations using wavelets and quadtree data structures // IEEE Trans. on Visualization and Computer Graphics. 1996. 2, N 2. 130-143.
- Lee S., Lawton W., Shen Z. An algorithm for matrix extension and wavelet constructions // Mathematics of Computation. 1996. 65, N 214. 723-737.
- Jawerth B., Sweldens W. An overwiew of wavelet based multiresolution analyses // SIAM Rev. 1994. 36, N 3. 377-412 (http://cm.bell-labs.com/who/wim/papers/).
- Kovaucevic J., Sweldens W. Wavelet families of increasing order in arbitrary dimensions // IEEE Trans. Image Processing. 2000. 9, N 3. 480-496 (http://cm.bell-labs.com/who/wim/papers/).
- Mallat S. A wavelet tour of signal processing. New York: Academic Press, 1998.
- Stollnitz E.J., Derose T.D., Salesin D.H. Wavelets for computer graphics. Theory and applications. San Francisco: Morgan Kaufmann, 1996.
- Sweldens W. The lifting scheme: a construction of second generation wavelets // SIAM J. Math. Anal. 1996. 3, N 2. 186-200 (http://cm.bell-labs.com/who/wim/papers/).
- Sweldens W., Schroder P. Building your own wavelets at home // Wavelets in Computer Graphics. ACM SIGGRAPH Course Notes. 1996 (http://cm.bell-labs.com/who/wim/papers/).
- Wojtaszczyk P. A mathematical introduction to wavelets. Cambridge: Cambridge University Press, 1997.