Применение метода погруженной границы для решения системы уравнений Навье-Стокса в областях сложной конфигурации

Авторы

  • Е.В. Мортиков

Ключевые слова:

уравнения Навье-Стокса
погруженная граница
моделирование
метод погруженной границы
метод фиктивных ячеек

Аннотация

Рассматривается применение метода погруженной границы для решения уравнений Навье-Стокса и его реализация. Численно решается ряд задач о течении вокруг кругового цилиндра, течении вокруг ступеньки, расположенной на входе в канал, течении вокруг двух круговых цилиндров, расположенных последовательно, и об обтекании трехмерного шара. Результаты используются для сравнения с методами, основанными на построении криволинейных сеток.


Загрузки

Опубликован

2010-01-26

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Автор

Е.В. Мортиков


Библиографические ссылки

  1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М: Наука, 2003.
  2. Самарский А.А., Андреев В.Б. Разностные схемы для эллиптических уравнений. М: Наука, 1976.
  3. Peskin C.S. The fluid dynamics of heart valves: experimental, theoretical and computational methods // Annual Review of Fluid Mechanics. 1982. 14. 235-259.
  4. de Zeeuw D., Powell K.G. An adaptively refined Cartesian mesh solver for the Euler equations // J. of Computational Physics. 1993. 104. 56-68.
  5. Ingram D.M., Causon D.M., Mingham C.G. Developments in Cartesian cut cell methods // Mathematics and Computers in Simulation. 2003. 61. 561-572.
  6. Mohd-Yosuf J. Combined immersed boundary/B-spline methods for simulation of flow in complex geometries // CTR Annual Research Briefs, Center for Turbulence Research. Stanford: Stanford University Press, 1997. 317-328.
  7. Verzicco R., Mohd-Yusof J., Orlandi P., Haworth D. Large eddy simulation in complex geometric configurations using boundary body forces // The American Institute of Aeronautics and Astronautics Journal. 2000. 38. 427-433. Van der Vorst H.A. Iterative Krylov methods for large linear systems. Cambridge: Cambridge University Press, 2003.
  8. Bramble J. Multigrid methods.
  9. Goldstein D., Handler R., Sirovich L. Modeling a no-slip flow boundary with an external force field // J. of Computational Physics. 1993. 105. 354-366.
  10. Tseng Y.-H., Ferziger J.H. A ghost-cell immersed boundary method for flow in complex geometry // J. of Computational Physics. 2003. 192. 593-623.
  11. Clarke D.K., Hassan H.A., Salas M.S. Euler calculations for multielement airfoils using Cartesian grids // The American Institute of Aeronautics and Astronautics Journal. 1986. 24. 353-358.
  12. Udaykumar H.S, Mittal R., Rampunggoon P., Khanna A. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries // J. of Computational Physics. 2001. 174. 345-380.
  13. Franke R. Scattered data interpolation: tests of some method // Mathematics of Computation. 1982. 38. 181-200.
  14. Gao T., Tseng Y.-H., Lu X.-Y. An improved hybrid Cartesian/immersed boundary method for fluid-solid flows // Int. J. for Numerical Methods in Fluids. 2007. 55. 1189-1211.
  15. Chorin A.J. Numerical solution of the Navier-Stokes equations // Mathematics of Computation. 1968. 22. 745-762.
  16. Kim J., Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations // J. of Computational Physics. 1985. 59. 308-323.
  17. Brown D.L, Cortez R., Minion M.L. Accurate projection methods for the incompressible Navier-Stokes equations // J. of Computational Physics. 2001. 168. 464-499.
  18. Saad Y. Iterative methods for sparse linear systems. Boston: PWS Publishing Company, 1996.
  19. Van der Vorst H.A. Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems // SIAM J. on Scientific and Statistical Computing. 1992. 13. 631-644.
  20. Stone H.L. Iterative solution of implicit approximations of multidimensional partial differential equations // SIAM J. on Numerical Analysis. 1968. 5. 530-558.
  21. Armaly B.F., Durst F., Pereira J.C. F., Schonung B. Experimental and theoretical investigation of backward-facing step flow // J. of Fluid Mechanics. 1983. 127. 473-496.
  22. Barton I.E. A numerical study of flow over a confined backward-facing step // Int. J. for Numerical Methods in Fluids. 1995. 21. 653-665.
  23. Tritton D.J. Experiments on the flow past a circular cylinder at low Reynolds numbers // J. of Fluid Mechanics. 1959. 6. 547-567.
  24. Mittal R., Iaccarino G. Immersed boundary methods // Annual Review of Fluid Mechanics. 2005. 37. 239-261.
  25. Винников В.В., Ревизников Д.Л. Неявный метод погруженной границы с фиктивными ячейками для решения задач о течении вязкой несжимаемой жидкости в сложных областях // Труды Московского авиационного института. 2007 (http://www.mai.ru/science/trudy).
  26. Dennis S.C. R., Chang G. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 // J. of Fluid Mechanics. 1970. 42. 471-489.
  27. Fornberg B. A numerical study of steady viscous flow past a circular cylinder // J. of Fluid Mechanics. 1980. 98. 819-855.
  28. Calhoun D. A Cartesian grid method for solving the two-dimensional streamfunction - vorticity equations in irregular regions // J. of Computational Physics. 2002. 176. 231-275.
  29. Park J., Kwon K., Choi H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160 // J. of Mechanical Science and Technology. 1998. 12. 1200-1205. Lima e Silva A.L. F., Silveira-Neto A., Damasceno J.J. R. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method // J. of Computational Physics. 2003. 189. 351-370.
  30. Russel D., Wang Z.J. A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow // J. of Computational Physics. 2003. 191. 177-205.
  31. Ye T., Mittal R., Udaykumar H.S., Shyy W. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries // J. of Computational Physics. 1999. 156. 209-240.
  32. Ding H., Shu C., Yeo K.S., Xu D. Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method // Computer Methods in Applied Mechanics and Engineering. 2004. 193. 727-744.
  33. Zdravkovich M.M. Review of flow interference between two circular cylinders in various arrangements // ASME J. of Fluids Engineering. 1997. 99. 618-633.
  34. Farrant T., Tan M., Price W.G. A cell boundary element method applied to laminar vortex-shedding from array of cylinders in various arrangements // J. of Fluids and Structures. 2001. 14. 375-402.
  35. Meneghini J.R., Saltara F., Siqueira C.L. R., Ferrari J.A. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements // J. of Fluids and Structures. 2001. 15. 327-350.
  36. Taneda S. Experimental investigation of the wake behind a sphere at low Reynolds numbers // J. of the Physical Society of Japan. 1956. 11. 1104-1108.
  37. Achenbach E. Vortex shedding form spheres // J. of Fluid Mechanics. 1974. 62. 209-221.
  38. Fadlun E.A., Verzicco R., Orlandi P., Mohd-Yusof J. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations // J. of Computational Physics. 2000. 161. 35-60.
  39. Johnson T.A., Patel V.C. Flow past a sphere up to a Reynolds number of 300 // J. of Fluid Mechanics. 1999. 378. 19-70.
  40. Iaccarino G., Ham F. Automatic mesh generation for LES in complex geometries // CTR Annual Research Briefs, Center for Turbulence Research. Stanford: Stanford University Press, 2005. 19-29.
  41. Rautaheimo P., Salminen E., Siikonen T. Parallelization of a multi-block Navier-Stokes solver // Proc. Third ECCOMAS Computational Fluid Dynamics Conf. Paris, 1996.
  42. Uhlmann M. Simulation of particulate flows on multi-processor machines with distributed memory. Technical Report N 1039. National Research Center for Energy, Environment and Technology. Madrid, 2003.
  43. Ольшанский М.А. Лекции и упражнения по многосеточным методам. М.: Изд-во Моск. ун-та, 2003.
  44. Шайдуров В.В. Многосеточные методы конечных элементов. М.: Наука, 1989.