Явные многошаговые методы численного решения жестких обыкновенных дифференциальных уравнений
Ключевые слова:
обыкновенные дифференциальные уравнения
жесткая задача Коши
явные многошаговые методы
Аннотация
Для решения жестких задач предлагается использовать явные многошаговые методы двух типов: адаптивные (нелинейные) методы и стабилизированные методы, имеющие расширенные области устойчивости. Рассмотрены методы 1-го и 2-го порядков с автоматическим выбором шага интегрирования. На тестовых задачах демонстрируется эффективность предложенных методов. Ключевые слова: обыкновенные дифференциальные уравнения, жесткая задача Коши, явные многошаговые методы
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- Скворцов Л.М. Адаптивные методы численного интегрирования в задачах моделирования динамических систем // Изв. РАН. Теория и системы управления. 1999. № 4. 72-78.
- Скворцов Л.М. Явные адаптивные методы численного решения жестких систем // Матем. моделирование. 2000. 12, № 12. 97-107.
- Скворцов Л.М. Явный многошаговый метод численного решения жестких дифференциальных уравнений // Журн. вычисл. матем. и матем. физики. 2007. 47, № 6. 959-967.
- Скворцов Л.М. Простые явные методы численного решения жестких обыкновенных дифференциальных уравнений // Вычислительные методы и программирование. 2008. 9. 154-162.
- Скворцов Л.М. Точность методов Рунге -Кутты при решении жестких задач // Журн. вычисл. матем. и матем. физики. 2003. 43, № 9. 1374-1384.
- Скворцов Л.М. Явные методы Рунге -Кутты для умеренно жестких задач // Журн. вычисл. матем. и матем. физики. 2005. 45, № 11. 2017-2030.
- Козлов О.С., Скворцов Л.М. Тестовое сравнение решателей ОДУ системы MATLAB // Всероссийская научная конференция «Проектирование научных и инженерных приложений в среде MATLAB». М.: Изд-во ИПУ РАН, 2002. 53-60 (http://matlab.exponenta.ru/conf2002/proceedings.php).
- Козлов О.С., Скворцов Л.М., Ходаковский В.В. Решение дифференциальных и дифференциально-алгебраических уравнений в программном комплексе «МВТУ» (http://model.exponenta.ru/mvtu/20051121.html).
- Лебедев В.И. Как решать явными методами жесткие системы дифференциальных уравнений // Вычислительные процессы и системы. Вып. 8. М.: Наука, 1991. 237-291.
- Лебедев В.И., Медовиков А.А. Явный метод второго порядка точности для решения жестких систем обыкновенных дифференциальных уравнений // Изв. вузов. Математика. 1998. № 9. 55-63.
- Sommeijer B.P., Shampine L.F., Verwer J.D. RKC: An explicit solver for parabolic PDEs // J. Comput. Appl. Math. 1997. 88, N 2. 315-326.
- Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. М.: Мир, 1999.
- Abdulle A. Fourth order Chebyshev methods with recurrence relation // SIAM J. Sci. Comput. 2002. 23, N 6. 2041-2054.
- Цыпкин Я.З. Основы теории автоматических систем. М.: Наука, 1977.