О регулярных методах решения обратных задач гравиметрии на многопроцессорном вычислительном комплексе

Авторы

  • Е.Н. Акимова
  • В.В. Васин
  • Г.Я. Пересторонина
  • Л.Ю. Тимерханова
  • П.С. Мартышко
  • Д.Е. Кокшаров

Ключевые слова:

обратная задача гравиметрии
интегральные уравнения Фредгольма
итерационные методы
параллельные алгоритмы
многопроцессорные вычислительные системы
масштабируемость

Аннотация

Для обратной задачи гравиметрии о восстановлении переменной плотности в горизонтальном и криволинейном слое по реальным гравитационным данным, измеренным на земной поверхности, предложены и численно реализованы на многопроцессорном вычислительном комплексе МВС-1000 прямые и итерационные методы решения. Проведен анализ эффективности и ускорения параллельных алгоритмов для различного числа процессоров. Работа выполнена при финансовой поддержке РФФИ (код проекта 06-01-00116). Статья подготовлена по материалам доклада авторов на международной научной конференции «Параллельные вычислительные технологии» (ПаВТ-2007; http://agora.guru.ru/pavt2007).


Загрузки

Опубликован

2007-03-30

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Авторы

Е.Н. Акимова

В.В. Васин

Г.Я. Пересторонина

Л.Ю. Тимерханова

П.С. Мартышко

Институт геофизики имени Ю.П. Булашевича УрО РАН
ул. Амундсена, 100, 620016, Екатеринбург

Д.Е. Кокшаров

Институт геофизики имени Ю.П. Булашевича УрО РАН
ул. Амундсена, 100, 620016, Екатеринбург


Библиографические ссылки

  1. Мартышко П.С., Пруткин И.Л. Технология разделения источников гравитационного поля по глубине // Геофизический журнал. 2003. 25, № 3. 159-168.
  2. Страхов В.Н., Иванов С.Н. Метод аналитического продолжения трехмерных потенциальных полей // Теория и практика геологической интерпретации гравитационных и магнитных аномалий. 2. Алма-Ата, 1984. 68-70.
  3. Пруткин И.Л. О предварительной обработке измерений, заданных на площади // Методы интерпретации и моделирования геофизических полей. Свердловск: УрО АН СССР, 1988. 11-15.
  4. Лаврентьев М.М. О некоторых некорректных задачах математической физики. Новосибирск: СО АН СССР, 1962.愦灭;percent 92 с.
  5. Фаддеев В.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. М.: Гос. издат. физ.-мат. литературы, 1963.
  6. Васин В.В. Итерационная регуляризация монотонных операторных уравнений первого рода в полуупорядоченных В-пространствах // ДАН. 1995. 341, № 2. 151-154.
  7. Baranov A.V., Latsis A.O., Sazhin C.V., Khramtsov M.Yu. The MVS-1000 System User’s Guide. http://parallel.ru/mvs/user.html
  8. Акимова Е.Н., Белоусов Д.В. Решение обратной задачи гравиметрии с помощью параллельного алгоритма квадратного корня // Вестник УГТУ-УПИ. № 17(69). Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005. 230-239.
  9. Парлетт Б. Симметричная проблема собственных значений. М.: Мир, 1983.
  10. Akimova E.N., Vasin V.V. Stable parallel algorithms for solving the inverse gravimetry and magnetometry problems // International Journal Engineering Modelling. University of Split, Croatia, 2004. 17, N 1-2. 13-19.
  11. Васин В.В., Пересторонина Г.Я., Пруткин И.Л., Тимерханова Л.Ю. Решение трехмерных обратных задач гравиметрии и магнитометрии для трехслойной среды // Матем. моделирование. 2003. 15, № 2. 69-76.
  12. Акимова Е.Н., Гемайдинов Д.В., Клименков А.В. Организация удаленного взаимодействия между МВС-1000 и пользователем при решении обратной задачи гравиметрии // Вестник УГТУ-УПИ. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006 (в печати).