Два десятилетия алгоритмической редукции фейнмановских интегралов
Авторы
-
А. В. Смирнов
-
В. А. Смирнов
Ключевые слова:
Интегралы Фейнмана
размерностная регуляризация
интегрирование по частям
мастер-интегралы
Аннотация
Статья представляет собой историографический обзор алгоритмов и компьютерных программ, разработанных для решения соотношений интегрирования по частям для фейнмановских интегралов. Соответствующая процедура решения является одним из ключевых этапов при вычислении этих интегралов, поскольку позволяет выражать интегралы, принадлежащие заданному семейству, в виде линейных комбинаций мастер-интегралов. В данном обзоре рассматриваются универсальные алгоритмы, которые, в принципе, могут быть применены к любому семейству фейнмановских интегралов.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- K. G. Chetyrkin, F. V. Tkachov, “Integration by parts: The algorithm to calculate β-functions in 4 loops,” Nucl. Phys. B 192 (1), 159-204 (1981).
doi 10.1016/0550-3213(81)90199-1
- S. G. Gorishny, S. A. Larin, L. R. Surguladze, F. V. Tkachov, “Mincer: Program for Multiloop Calculations in Quantum Field Theory for the Schoonschip System,” Comput. Phys. Commun. 55 (3), 381-408 (1989).
doi 10.1016/0010-4655(89)90134-3
- S. A. Larin, F. V. Tkachov, J. A. M. Vermaseren, , “The FORM version of MINCER,” Preprint NIKHEF-H/91-18 (National Institute for Subatomic Physics (NIKHEF), Amsterdam, Netherlands, 1991).
https://inis.iaea.org/records/y68hj-8d895.
- J. A. M. Vermaseren, “New features of FORM,” arXiv: math-ph/0010025 (2000).
doi 10.48550/arXiv.math-ph/0010025
- A. V. Smirnov and A. V. Petukhov, “The Number of Master Integrals is Finite,” Lett. Math. Phys. 97 (1), 37-44 (2011).
doi 10.1007/s11005-010-0450-0
- S. Laporta, “High-precision calculation of multiloop Feynman integrals by difference equations,” Int. J. Mod. Phys. A 15 (32), 5087-5159 (2000).
doi 10.1142/S0217751X00002159
- C. Anastasiou and A. Lazopoulos, “Automatic integral reduction for higher order perturbative calculations,” J. High Energy Phys. No. 7, Article Number 046 (2004).
doi 10.1088/1126-6708/2004/07/046
- T. Gehrmann, E. Remiddi, “Differential equations for two-loop four-point functions,” Nucl. Phys. B 580 (1), 485-518 (2000).
doi 10.1016/S0550-3213(00)00223-6
- A. V. Smirnov, V. A. Smirnov, “Applying Gröbner bases to solve reduction problems for Feynman integrals,” J. High Energy Phys. No. 1, Article Number 001 (2006).
doi 10.1088/1126-6708/2006/01/001
- A. V. Smirnov, “An Algorithm to construct Gröbner bases for solving integration by parts relations,” J. High Energy Phys. No. 4, Article Number 026 (2006).
doi 10.1088/1126-6708/2006/04/026
- B. Buchberger, “Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zerodimensional polynomial ideal,” J. Symbolic Comput. 41, 475-511 (2006).
doi 10.1016/j.jsc.2005.09.007
- A. V. Smirnov, “Algorithm FIRE -- Feynman Integral REduction,” J. High Energy Phys. No. 10, Article Number 107 (2008).
doi 10.1088/1126-6708/2008/10/107
- C. Studerus, “Reduze -- Feynman Integral Reduction in C++,” Comput. Phys. Commun. 181 (7), 1293-1300 (2010).
doi 10.1016/j.cpc.2010.03.012
- A. von Manteuffel, C. Studerus, “Reduze 2 - Distributed Feynman Integral Reduction,” arXiv: 1201.4330 [hep-ph] (2012).
doi 10.48550/arXiv.1201.4330
- R. N. Lee, “LiteRed 1.4: a powerful tool for reduction of multiloop integrals,” J. Phys. Conf. Ser. 523, Article Number 012059 (2014).
doi 10.1088/1742-6596/523/1/012059
- R. N. Lee, “Presenting LiteRed: a tool for the Loop InTEgrals REDuction,” arXiv: 1212.2685 [hep-ph] (2012).
doi 10.48550/arXiv.1212.2685
- A. V. Smirnov, V. A. Smirnov, “FIRE4, LiteRed and accompanying tools to solve integration by parts relations,” Comput. Phys. Commun. 184 (12), 2820-2827 (2013).
doi 10.1016/j.cpc.2013.06.016
- A. Pak, “The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques,” J. Phys. Conf. Ser. 368, Article Number 012049 (2012).
doi 10.1088/1742-6596/368/1/012049
- B. Ruijl, T. Ueda and J. A. M. Vermaseren, “Forcer, a Form program for the parametric reduction of four-loop massless propagator diagrams,” Comput. Phys. Commun. 253, Article Number 107198 (2020).
doi 10.1016/j.cpc.2020.107198
- A. V. Smirnov, “FIRE5: A C++ implementation of Feynman Integral REduction,” Comput. Phys. Commun. 189, 182-191 (2015).
doi 10.1016/j.cpc.2014.11.024
- P. Maierhöfer, J. Usovitsch and P. Uwer, “Kira -- A Feynman integral reduction program,” Comput. Phys. Commun. 230, 99-112 (2018).
doi 10.1016/j.cpc.2018.04.012
- A. V. Smirnov, F. S. Chukharev, “FIRE6: Feynman Integral REduction with modular arithmetic,” Comput. Phys. Commun. 247, Article Number 106877 (2020).
doi 10.1016/j.cpc.2019.106877
- J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch, “Integral reduction with Kira 2.0 and finite field methods,” Comput. Phys. Commun. 266, Article Number 108024 (2021).
doi 10.1016/j.cpc.2021.108024
- J. Klappert and F. Lange, “Reconstructing rational functions with FireFly,” Comput. Phys. Commun. 247, Article Number 106951 (2020).
doi 10.1016/j.cpc.2019.106951
- J. Klappert, S. Y. Klein, and F. Lange, “Interpolation of dense and sparse rational functions and other improvements in FireFly,” Comput. Phys. Commun. 264, Article Number 107968 (2021).
doi 10.1016/j.cpc.2021.107968
- A. V. Smirnov and Mao Zeng, “FIRE 6.5: Feynman integral reduction with new simplification library,” Comput. Phys. Commun. 302, Article Number 109261 (2024).
doi 10.1016/j.cpc.2024.109261
- K. S. Mokrov, A. V. Smirnov, and Mao Zeng, “Rational Function Simplification for Integration-by-Parts Reduction and Beyond,” Numerical Methods and Programming 24 (4), 352-367 (2023).
doi 10.26089/NumMet.v24r425
- Symbolica | Modern Computer Algebra.
https://symbolica.io . Cited October 27, 2025.
- FLINT: Fast Library for Number Theory.
https://flintlib.org . Cited October 27, 2025.
- F. Lange, J. Usovitsch, and Z. Wu, “Kira 3: integral reduction with efficient seeding and optimized equation selection,” arXiv: 2505.20197 [hep-ph] (2025).
doi 10.48550/arXiv.2505.20197
- A. V. Smirnov, Mao Zeng, “FIRE 7: Automatic Reduction with Modular Approach,” arXiv: 2510.07150 [hep-ph] (2025).
doi 10.48550/arXiv.2510.07150
- A. von Manteuffel and R. M. Schabinger, “A novel approach to integration by parts reduction,” Phys. Lett. B 744, 101-104 (2015).
doi 10.1016/j.physletb.2015.03.029
- Z. Wu, J. Boehm, R. Ma, H. Xu, and Y. Zhang, “NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals,” Comput. Phys. Commun. 295, Article Number 108999 (2024).
doi 10.1016/j.cpc.2023.108999
- Z. Wu, J. Böhm, R. Ma, J. Usovitsch, Y. Xu, and Y. Zhang, “Performing integration-by-parts reductions using NeatIBP 1.1 + Kira,” arXiv: 2502.20778 [hep-ph] (2025).
doi 10.48550/arXiv.2502.20778
- X. Guan, X. Liu, Y.-Q. Ma, and W.-H. Wu, “Blade: A package for block-triangular form improved Feynman integrals decomposition,” Comput. Phys. Commun. 310, Article Number 109538 (2025).
doi 10.1016/j.cpc.2025.109538