Исследование масштабируемости параллельного алгоритма численного моделирования удержания плазмы в открытых магнитных ловушках методами имитационного моделирования
Авторы
-
И. Г. Черных
-
Д. В. Винс
-
В. А. Вшивков
-
М. А. Боронина
Ключевые слова:
имитационное моделирование
физика плазмы
параллельные алгоритмы и программы
Аннотация
В статье рассматривается методика оценки масштабируемости параллельных алгоритмов. Вместо проведения дорогостоящих экспериментов на суперкомпьютерах предлагается использовать специальную имитационную модель. Методика заключается в изучении и разработке схемы коммуникаций и вычислений исследуемого алгоритма, создании на ее основе имитационной модели с использованием модели акторов, настройке под конкретную архитектуру суперкомпьютера и исследовании масштабируемости. В статье демонстрируется применение этой методики к задаче численного моделирования удержания плазмы в открытых магнитных ловушках. Результаты имитационного моделирования свидетельствуют о 85% эффективности масштабирования алгоритма при его развертывании на тысячах вычислительных ядер.
Раздел
Параллельные программные средства и технологии
Библиографические ссылки
- B. Glinskiy, I. Kulikov, I. Chernykh, A. Snytnikov, A. Sapetina, D. Weins, “The Integrated Approach to Solving Large-Size Physical Problems on Supercomputers,” in V. Voevodin, S. Sobolev (eds) Supercomputing, RuSCDays 2017, Moscow, Russia, September 25–26, 2017.(CCIS, Springer, Cham, 2017). Vol. 793, 278–289.
doi 10.1007/978-3-319-71255-0_22
- S. S. Dosanjh, R. F. Barrett, D. W. Doerfler, et al., “Exascale design space exploration and co-design,” Future Generation Computer Systems. 30 (1), 46–58 (2014).
doi 10.1016/j.future.2013.04.018
- P. Czarnul, J. Kuchta, P. Rosciszewski, J. Proficz, “Modeling energy consumption of parallel applications,” Proc. in M. Ganzha, L. Maciaszek, M. Paprzycki (eds) Federated Conference on Computer Science and Information Systems, Gdańsk, Poland, September 11–14, 2016.Annals of Computer Science and Information Systems, Vol. 8, 855–864.
doi 10.15439/2016F308
- D. Shubhangi, S. Bushra, “Deploying Efficiently MapReduce Applications in Heterogeneous Computing Environments Using Novel Scheduling Algorithms,” International Journal of Scientific Engineering and Research (IJSER).5 (7), 61–71 (2017).
doi 10.70729/IJSER171622
- M. Coelho, K. Ocaña, A. Pereira, et al., “Machine Learning Regression-Based Prediction for Improving Performance and Energy Consumption in HPC Platforms,” in Guerrero G., San Martín J., Meneses E., Barrios Hernández C.J., Osthoff C., Monsalve Diaz J.M. (eds) High Performance Computing, CARLA 2024.(CCIS, Springer, Cham, 2025). Vol. 2270, 186–200.
doi 10.1007/978-3-031-80084-9_13
- H. Casanova, A. Legrand, and M. Quinson, “SimGrid: A Generic Framework for Large-Scale Distributed Experiments,” Proc. in Tenth International Conference on Computer Modeling and Simulation (uksim 2008), April 1–3, 2008.(Cambridge, UK, 2008). 126–131.
doi 10.1109/UKSIM.2008.28
- M. Hsieh, R. Riesen, K. Thompson, W. Song, A. Rodrigues, “SST: A Scalable Parallel Framework for Architecture-Level Performance, Power, Area and Thermal Simulation,” Comput. J. 55 (2), 181–191 (2012).
doi 10.1093/comjnl/bxr069
- D. Podkorytov, A. Rodionov, H. Choo, “Agent-based simulation system AGNES* for networks modeling: review and researching,” Proc. of the 6th Int. Conference on Ubiquitous Information Management and Communication (ACM ICUIMC 2012), Kuala Lumpur, Malaysia, February 20–22, 2012.(ACM, New York, NY, USA). Article No. 115, 1–4. doi 10.1145/2184751.2184883.
- D. V. Weins, B. M. Glinskiy, I. G. Chernykh, “Analysis of Means of Simulation Modeling of Parallel Algorithms,” in V. Voevodin, S. Sobolev (eds) Supercomputing, RuSCDays 2018, Moscow, Russia, September 24–25, 2018.(CCIS, Springer, Cham, 2019). Vol. 965, 29–39.
doi 10.1007/978-3-030-05807-4_3
- F. Cesarini, S. Thompson, Erlang Programming(O’Reilly, 2009).
- Index - Erlang/OTP.
http://www.erlang.org/ Cited December 18, 2025.
- D. D. Ryutov, “Open-ended traps,” Soviet Physics Uspekhi. 31 (4), 300 (1988).
doi 10.1070/PU1988v031n04ABEH005747
- I. Chernykh, I. Kulikov, V. Vshivkov, E. Genrikh, D. Weins, G. Dudnikova, I. Chernoshtanov, M. Boronina, “Energy Efficiency of a New Parallel PIC Code for Numerical Simulation of Plasma Dynamics in Open Trap,” Mathematics. 10 (19), 3684 (2022).
doi 10.3390/math10193684
- B. Glinsky, A. Rodionov, M. Marchenko, D. Podkorytov, D. Weins, “Scaling the Distributed Stochastic Simulation to Exaflop Supercomputers,” Proceedings of the 14th International Conference on High Performance Computing and Communication textsl&IEEE 9th International Conference on Embedded Software and Systems (HPCC–2012), Liverpool, UK, June 25–27, 2012, (Liverpool, UK, 2012). pp. 1131–1136.
doi 10.1109/HPCC.2012.166
- D. A. Migov, D. V. Weins, “Parallel implementation and simulation of network reliability calculation by Monte Carlo method,” Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie vychislitelnaja tehnika i informatika [Tomsk State University Journal of Control and Computer Science]. 47, 66–74 (2019). [in Russian].
doi 10.17223/19988605/47/8
- I. S. Chernoshtanov, I. G. Chernykh, G. I. Dudnikova, M. A. Boronina, T. V. Liseykina, and V. A. Vshivkov, “Effects Observed in Numerical Simulation of High-Beta Plasma with Hot Ions in an Axisymmetric Mirror Machine,” Journal of Plasma Physics, 90 (2), Article No. 905900211 (2024).
doi 10.1017/S0022377824000333
- B. Glinskiy, A. Sapetina, V. Martynov, D. Weins, I. Chernykh, “The Hybrid-Cluster Multilevel Approach to Solving the Elastic Wave Propagation Problem,” in L. Sokolinsky, M. Zymbler (eds) Parallel Computational Technologies. PCT 2017.(CCIS, Springer, Cham, 2017). Vol. 753, 261–274.
doi 10.1007/978-3-319-67035-5_19
- I. Kulikov, I. Chernykh, B. Glinskiy, D. Weins, and A. Shmelev, “Astrophysics simulation on RSC massively parallel architecture,” Proc. in 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen, China, May 4–7, 2015.pp. 1131–1134.
doi 10.1109/CCGrid.2015.102
- M. A. Boronina, I. M. Kulikov, I. G. Chernikh, D. V. Vins, “Using a Combination of Roe and Rusanov Schemes for the Numerical Solution of the Equations of Magnetohydrodynamics in the Problems of Cosmic Plasma,” J. Appl. Ind. Math. 16 (4), 596–605 (2022).
doi 10.1134/S1990478922040020
- D. Weins, V. Vorobyev, I. Chernykh, I. Logashenko, “Development of simulation model of HPC system for Super Charm-Tau factory,” Journal of Physics: Conference Series, 1336 (1), Article No. 012025 (2019).
doi 10.1088/1742-6596/1336/1/012025
- Particle-in-Cell Method – WarpX 22.11 documentation.
https://warpx.readthedocs.io/en/22.11/theory/picsar_theory.html Cited December 18, 2025.
- M. A. Boronina, I. S. Chernoshtanov, I. G. Chernykh, et al., “Three-Dimensional Model for Numerical Simulation of Beam-Plasma Dynamics in Open Magnetic Trap,” Lobachevskii J. Math. 45, 1–11 (2024).
doi 10.1134/S1995080224010074
- R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles(Taylor & Francis Group, NY, USA, 1988).
doi 10.1201/9780367806934
- S. E. Kireev, “Parallel Realization of the Particle-in-Cell Method for Simulating Gravitational Cosmodynamics Problems,” Avtometriya, No. 3. 3–35 (2006).
https://sibran.ru/upload/iblock/d40/d4055c89a69fe12026b16920879c8ba6.pdf. [in Russian] Cited December 18, 2025.
doi 10.1017/S0022377824000333
- Fix Performance Bottlenecks with Intel® VTune™ Profiler.
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html Cited December 18, 2025.