Ускорение численного моделирования сейсмических данных для мониторинга захоронения CO₂ с использованием нейронной сети
Авторы
-
Е. А. Гондюл
-
В. В. Лисица
-
Д. М. Вишневский
Ключевые слова:
сейсмический мониторинг
парниковые газы
фильтрация двухфазной жидкости
нейронные сети
Аннотация
Сейсмический мониторинг накопления и захоронения парниковых газов в породе коллекторе имеет решающее значение для оценки безопасности и эффективности захоронения, предотвращения утечек. Малое изменение свойств пласта, вызванных флюидовытеснением, приводит к изменению сейсмических атрибутов. При этом моделирование распространения сейсмических волновых полей ресурсозатратно из-за необходимости решать задачу для серии сейсмогеологических моделей среды, соответствующих различным этапам закачки флюида. В работе представлен алгоритм моделирования сейсмических волновых полей с использованием сеточного метода и нейронной сети для подавления численных ошибок в сейсмограммах при применении к задаче сейсмического мониторинга захоронения парниковых газов. Алгоритм ускоряет расчеты до 4 раз за счет применения нейронной сети к быстро рассчитанным сейсмограммам с использованием грубой расчетной сетки.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- J. Paffenholz, “Introduction to this special section: The role of advanced modeling in enhanced carbon storage, “ The Leading Edge. 40 (6). 408-412 (2021).
doi 10.1190/tle40060408.1
- R. Pevzner, M. Urosevic, E. Caspari, R. J. Galvin, M. Madadi, T. Dance, V. Shulakova, B. Gurevich, V. Tcheverda., Y. Cinar, “Feasibility of time-lapse seismic methodology for monitoring the injection of small quantities of co2 into a saline formation, co2crc otway project, “ Energy Procedia. 37, 4336-4343 (2023).
doi 10.1016/j.egypro.2013.06.336
- Z. Wang, W. P. Harbert, R. M. Dilmore, L. Huang, “Modeling of time-lapse seismic monitoring using co2 leakage simulations for a model co2 storage site with realistic geology: Application in assessment of early leak-detection capa- bilities, “ International Journal of Greenhouse Gas Control. 76, 39-52 (2018).
doi 10.1016/j.ijggc.2018.06.011
- M. Ivandic, P. Bergmann, J. Kummerow, F. Huang, C. Juhlin, S. Lueth, “Monitoring CO2 saturation using time‐lapse amplitude versus offset analysis of 3D seismic data from the Ketzin CO2 storage pilot site, Germany, “ Geophysical Prospecting. 66 (8). 1568-1585 (2018).
doi 10.1111/1365-2478.12666
- J. Virieux, “P-sv wave propagation in heterogeneous media: Velocity-stress finite-difference method, “ Geophysics. 51 (4). 889-901 (1986).
doi 10.1190/1.1442147
- A. R Levander, “Fourth-order finite-difference p-sv seismograms, “ Geophysics. 53 (11).1425-1436 (1988).
doi 10.1190/1.1442422
- E. H. Saenger, N. Gold, S. A. Shapiro, “Modeling the propagation of the elastic waves using a modified finite-difference grid, “ Wave Motion. 31. 77-92 (2000).
doi 10.1016/S0165-2125(99)00023-2
- V. Lisitsa and D. Vishnevskiy, “Lebedev scheme for the numerical simulation of wave propagation in 3d anisotropic elasticity, “ Geophysical Prospecting. 58 (4). 619-635 (2010).
doi 10.1111/j.1365-2478.2009.00862.x
- V. Lisitsa, V. Tcheverda, D. Vishnevsky, “Numerical simulation of seismic waves in models with anisotropic formations: coupling virieux and lebedev finite-difference schemes, “ Computational Geosciences. 16 (4). 1135-1152 (2012).
doi 10.1007/s10596-012-9308-0
- A. Idesman and D. Pham, “Finite element modeling of linear elastodynamics problems with explicit time-integration methods and linear elements with the reduced dispersion error, “ Computer Methods in Applied Mechanics and Engineering. 271. 86-108 (2014).
doi 10.1016/j.cma.2013.12.002
- M. Dumbser and M. Kaser, “An arbitrary high-order discontinuous galerkin method for elastic waves on unstructured meshes - ii. the three-dimensional isotropic case, “ Geophysical Journal International. 167 (1), 319-336 (2006).
doi 10.1111/j.1365-246X.2006.03120.x
- V. Lisitsa, V. Tcheverda, C. Botter, “Combination of the discontinuous galerkin method with finite differences for simulation of seismic wave propagation, “ Journal of Computational Physics. 311. 142-157 (2016).
doi 10.1016/j.jcp.2016.02.005
- D. Komatitsch and J. P. Vilotte, “The spectral element method; an efficient tool to simulate the seismic response of 2d and 3d geological structures, “ Bulletin of the Seismological Society of America. 88 (2). 368-392 (1988).
doi 10.1785/BSSA0880020368
- J. Tromp, D. Komatitsch, Q. Liu, “Spectral-element and adjoint methods in seismology, “ Commun. Comput. Phys. 3 (1). 1-32 (2008).
https://www.geophysik.uni-muenchen.de/ igel/EGU2007/Material/Tromp/CiCP-06-077.pdf . Cited October 23, 2025.
- S. Anyosa, S. Bunting, J. Eidsvik, A. Romdhane, P. Bergmo, “Assessing the value of seismic monitoring of CO2 storage using simulations and statistical analysis, “ International Journal of Greenhouse Gas Control. 105. 103219 (2021).
doi 10.1016/j.ijggc.2020.103219
- G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, S. M. Benson, “U-FNO—an enhanced fourier neural operator-based deep-learning model for multiphase flow, “ Advances in Water Resources. 163, 104180 (2022).
doi 10.1016/j.advwatres.2022.104180
- Z. Yin, A. Siahkoohi, M. Louboutin, F. J. Herrmann, “Learned coupled inversion for carbon sequestration monitoring and forecasting with fourier neural operators, “ in Second International Meeting for Applied Geoscience & Energy, Houston, Texas, August 28, 2022 (Society of Exploration Geophysicists, 2022), pp. 467-472.
doi 10.1190/image2022-3722848.1
- L. Bei, E. L. Yunyue, “Neural Network-Based CO2 Interpretation From 4D Sleipner Seismic Images, “ Journal of Geophysical Research: Solid Earth. 126 (12). e2021JB022524 (2021).
doi 10.1029/2021JB022524
- H. Sheng, X. Wu, X. Sun, L. Wu, “Deep learning for characterizing co2 migration in time-lapse seismic images, “ Fuel. 336, 126806 (2023).
doi 10.1016/j.fuel.2022.126806
- P. Shokouhi, V. Kumar, S. Prathipati, S. A. Hosseini, C. L. Giles, D. Kifer, “Physics-informed deep learning for prediction of CO2 storage site response, “ Journal of Contaminant Hydrology. 241. 103835 (2021).
doi 10.1016/j.jconhyd.2021.103835
- G. Wen, C. Hay, S. M. Benson, “CCSNet: A deep learning modeling suite for CO2 storage, “ Advances in Water Resources. 155. 104009 (2021).
doi 10.1016/j.advwatres.2021.104009
- K. Gadylshin, V. Lisitsa, K. Gadylshina, D. Vishnevsky, “Frequency domain numerical dispersion mitigation network, “ in Computational Science and Its Applications (ICCSA 2023), Athens, Greece, July 3-6, 2023 (Lecture Notes in Computer Science, 2023), pp. 31-41.
doi 10.1007/978-3-031-37111-0_3
- E. Gondyul, V. Lisitsa, K. Gadylshin, D. Vishnevsky, “Numerical dispersion mitigation neural network with the model-based training dataset optimization, “ in Computational Science and Its Applications (ICCSA 2023), Athens, Greece, July 3-6, 2023 (Lecture Notes in Computer Science, 2023), pp. 19-30.
doi 10.1007/978-3-031-37111-0_2
- P. Isola, J. Zhu, T. Zhou, A. A. Efros, “Image-to-image translation with conditional adversarial networks, “ in IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, USA July 21-26, 2017 (IEEE, 2017), pp. 5967-5976.
doi 10.1109/CVPR.2017.632
- J. W. Sheldon, B. Zondek, W. T. Cardwell, “One-dimensional, incompressible, non-capillary, two-phase fluid flow in a porous medium, “ Trans. SPE AIME. 216. 290-296 (1959).
doi 10.2118/978-G
- Jr. J. Douglas, D. W. Peaceman, Jr. H. H. Rachford, “A method for calculating multi-dimensional immiscible displacement, “ Trans. SPE AIME. 216. 297-306 (1959).
doi 10.2118/1327-G
- R. C. MacDonald, “Methods for Numerical Simulation of Water and Gas Coning, “ Society of Petroleum Engineers Journal. 10 (4), 425-436 (1970).
doi 10.2118/2796-PA
- G. W. Thomas and D. H. Thurnau, “Reservoir Simulation Using an Adaptive Implicit Method, “ Society of Petroleum Engineers Journal. 23 (24). 759-768 (1983).
doi 10.2118/10120-PA
- W. F. Murphy, L. M. Schwartz, B. Hornby, “Interpretation physics of VP and VS in sedimentary rocks, “ in Trans. SPWLA 32nd Ann. Logging Symp, Midland, Texas, June 16-–19, 1991 ,
https://onepetro.org/SPWLAALS/proceedings-abstract/SPWLA-1991/SPWLA-1991/SPWLA-1991-FF/18997 . Cited October 23, 2025.
- Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media , (Society for Industrial and Applied Mathematics, 2006).
doi 10.1137/1.9780898718942
- Yu. M. Laevsky, P. E. Popov, A. A. Kalinkin, “ Modeling of Two-Phase Fluid Filtration by a Mixed Method of Finite Elements, “ Mat. Model. 3. 74-90 (2010).
https://www.mathnet.ru/links/d005d54746cd4b0d4878f90d6c121b63/mm_2950_refs_eng.pdf . Cited October 23, 2025.
- J. Virieux and R. Madariaga, “Dynamic faulting studied by a finite difference method, “ Bulletin of the Seismological Society of America. 72 (2). 345-369 (1982).
doi 10.1785/BSSA0720020345
- K. Gadylshin, D. Vishnevsky, K. Gadylshina, V. Lisitsa, “Numerical dispersion mitigation neural network for seismic modeling, “ Geophysics. 87 (32). T237-T249 (2022).
doi 10.1190/geo2021-0242.1
- E. Gondyul, V. Lisitsa, K. Gadylshin, D. Vishnevsky, “Numerical dispersion mitigation neural network with velocity model correction, “ Computers & Geosciences. 196. 105806 (2025).
doi 10.1016/j.cageo.2024.105806