Усовершенствованный метод распознавания объектов морских и прибрежных систем на основе комбинации метода локальных бинарных шаблонов и нейросетевых технологий
Авторы
-
А. И. Сухинов
-
Д. А. Соломаха
Ключевые слова:
PSPNet
LBP
обнаружение разлива нефти
сегментация изображений
Аннотация
В работе предложена гибридная модель LBP+PSPNet для повышения точности сегментации нефтяных разливов на RGB-снимках дистанционного зондирования Земли, особенно в условиях низкой контрастности между загрязнениями и морским фоном. Модель объединяет извлечение локальных текстурных признаков (LBP) с глобальным контекстным анализом на основе Pyramid Scene Parsing Network (PSPNet). LBP усиливает детализацию текстурных особенностей нефтяной пленки, которые часто маскируются солнечными бликами или мелкими пятнами. PSPNet обеспечивает многомасштабный анализ изображения, что позволяет точно сегментировать как крупные разливы, так и слабо выраженные загрязнения. Эксперименты показали, что интеграция LBP увеличивает метрику IoU на 4.6% по сравнению с базовой PSPNet-архитектурой. Предложенная модель достигает F1-меры 0.85 при тестировании на низкоконтрастных сценариях, демонстрируя устойчивость к шумам и атмосферным искажениям. Результаты подтверждают эффективность синтеза классических методов анализа текстур и глубокого обучения для задач экологического мониторинга.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- J. Beyer, H. C. Trannum, T. Bakke, et al., “Environmental Effects of the Deepwater Horizon Oil Spill: A Review,” Marine Pollution Bulletin 110 (1), 28-51. (2016).
doi 10.1016/j.marpolbul.2016.06.027
- J. W. Farrington, “Oil Pollution in the Marine Environment II: Fates and Effects of Oil Spills,” Environment: Science and Policy for Sustainable Development 56 (4), 16-31 (2014).
doi 10.1080/00139157.2014.922382
- N. A. Bui, Y. Oh, I. Lee, “Oil Spill Detection and Classification through Deep Learning and Tailored Data Augmentation,” International Journal of Applied Earth Observation and Geoinformation 129 (3-4), Article Number 103845. (2024).
doi 10.1016/j.jag.2024.103845
- M. N. Pangilinan, R. Anacan, and R. Garcia, “Design and Development of an Oil Spill Detection and Transmission System Using Artificial Illumination Using LEDs,” in Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS) , Bangkok, Thailand, 2016, pp. 407-412.
doi 10.1109/ISMS.2016.61
- O. N. Gershenzon, V. E. Gershenzon, and S. V. Osheyko, “Integral Solution for Oil Spill Detection Using SAR Data,” Proceedings of the 2007 3rd International Conference on Recent Advances in Space Technologies (RAST 2007), 361-365 (2007).
doi 10.1109/RAST.2007.4284013
- D.-W. Shin, C.-S. Yang, and W.-J. Choi, “Oil Spill Detection Technique with Automatic Updating Using Deep Learning and Oil Spill Index,” Proceedings of the 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2023), 4019-4022 (2023).
doi 10.1109/IGARSS52108.2023.10281425
- Z. Ghorbani and A. H. Behzadan, “Monitoring Offshore Oil Pollution Using Multi-Class Convolutional Neural Networks,” Environmental Pollution 289, Article Number 117884 (2021).
doi 10.1016/j.envpol.2021.117884
- V. Bondur, T. Chimitdorzhiev, I. Kirbizhekova, and A. Dmitriev, “A Novel Method of Boreal Zone Reforestation/Afforestation Estimation Using PALSAR-1, 2 and Landsat-5, 8 Data,” Forests 15 (1), Article Number 132 (2024).
doi 10.3390/f15010132
- H. Guo, G. Wei, and J. An, “Dark Spot Detection in SAR Images of Oil Spill Using Segnet,” Applied Sciences 8 (12), Article Number 2670 (2018).
doi 10.3390/app8122670
- A. Pisano, F. Bignami, and R. Santoleri, “Oil Spill Detection in Glint-Contaminated Near-Infrared MODIS Imagery,” Remote Sensing 7 (1), 1112-1134 (2015).
doi 10.3390/rs70101112
- N. Kitajima, R. Seto, D. Yamazaki, et al., “Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent,” Remote Sensing 13 (10), Article Number 1959 (2021).
doi 10.3390/rs13101959
- V. V. Sidoryakina and D. A. Solomakha, “Identification of Marine Oil Spills Using Neural Network Technologies,” Computational Mathematics and Information Technologies 8 (4), 43-48 (2024).
doi 10.23947/2587-8999-2024-8-4-43-48
- S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on Knowledge and Data Engineering 22 (10), 1345-1359 (2010).
doi 10.1109/TKDE.2009.191
- N. Kitajima, R. Seto, D. Yamazaki, et al., “Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent,” Remote Sensing 13 (10), Article Number 1959 (2021).
doi 10.3390/rs13101959
- S. Ahmed, T. ElGharbawi, M. Salah, and M. El-Mewafi, “Deep Neural Network for Oil Spill Detection Using Sentinel-1 Data: Application to Egyptian Coastal Regions,” Geomatics, Natural Hazards and Risk 14 (1), 76-94 (2022).
doi 10.1080/19475705.2022.2155998
- H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network,” Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6230-6239 (2017).
doi 10.1109/CVPR.2017.660
- T. Ojala, M. Pietik854inen, and D. Harwood, “A Comparative Study of Texture Measures with Classification Based on Featured Distributions,” Pattern Recognition 29 (1), 51-59 (1996).
doi 10.1016/0031-3203(95)00067-4
- C. Brekke and A. H. S. Solberg, “Oil Spill Detection by Satellite Remote Sensing,” Remote Sensing of Environment 95 (1), 1-13 (2005).
doi 10.1016/j.rse.2004.11.015
- N. A. Firsov, V. V. Podlipnov, N. A. Ivliev, et al., “Ensembles of Spectral-Spatial Convolutional Neural Network Models for Classifying Soil Types in Hyperspectral Images,” Computer Optics 47 (5), 795-805 (2023).
doi 10.18287/2412-6179-CO-1260
- A. B. Whetten and H. J. Demler, “Detection of Multidecadal Changes in Vegetation Dynamics and Association with Intra-Annual Climate Variability in the Columbia River Basin,” Remote Sensing 14 (3), Article Number 569 (2022).
doi 10.3390/rs14030569
- S. T. Yekeen and A.-L. Balogun, “Automated Marine Oil Spill Detection Using Deep Learning Instance Segmentation Model,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020, 1271-1276 (2020).
doi 10.5194/isprs-archives-XLIII-B3-2020-1271-2020
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv: 1512.03385 [cs.CV] (2015).
doi 10.48550/arXiv.1512.03385
- O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015, in Lecture Notes in Computer Science 9351, pp. 234-241 (2015).
doi 10.1007/978-3-319-24574-4_28
- Y. Chen, Y. Sun, W. Yu, Y. Liu, and H. Hu, “A Novel Lightweight Bilateral Segmentation Network for Detecting Oil Spills on the Sea Surface,” Marine Pollution Bulletin 175 (1), Article Number 113343 (2022).
doi 10.1016/j.marpolbul.2022.113343
- T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (7), 971-987 (2002).
doi 10.1109/TPAMI.2002.1017623
- N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 1, 886-893 (2005).
doi 10.1109/CVPR.2005.177
- D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision 60 (2), 91-110 (2004).
doi 10.1023/B: VISI.0000029664.99615.94.
- T. Bouwmans, “Traditional and Recent Approaches in Background Modeling for Foreground Detection: An Overview,” Computer Science Review 11-12, 31-66 (2014).
doi 10.1016/j.cosrev.2014.04.001
- S. Brahnam, L. C. Jain, L. Nanni, and A. Lumini, Local Binary Patterns: New Variants and Applications. Studies in Computational Intelligence. (Springer, Berlin, 2014).
doi 10.1007/978-3-642-39289-4
- M. Heikkil854 and M. Pietik854inen, “A Texture-Based Method for Modeling the Background and Detecting Moving Objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (4), 657-662 (2006).
doi 10.1109/TPAMI.2006.68