Лагранжев метод для жестких задач динамики двухфазной среды с релаксацией: частица-сетка или частица-частица
Авторы
-
О. П. Стояновская
Ключевые слова:
равномерные численные методы
двухжидкостная гидродинамика сглаженных частиц
SPH-IDIC
динамика газовзвесей
жесткие релаксационные слагаемые
жесткое трение
Аннотация
Макроуровневые модели динамики газовзвесей часто представляют собой дифференциальные уравнения в частных производных с релаксационными слагаемыми, описывающими передачу импульса и энергии от газа к частицам и наоборот. Для ультрадисперсных частиц время релаксации намного короче, чем время, на котором рассматривается динамика среды. В работе исследуется лагранжев метод моделирования динамики газовзвесей “двухжидкостная гидродинамика сглаженных частиц” (Two-Fluid Smoothed Particle Hydrodynamics, TFSPH). TFSPH подразумевает, что каждая фаза (газ и частицы) моделируется своим набором частиц. В рамках TFSPH известны два подхода к расчету релаксационного взаимодействия (трения), которое определяется разностью скоростей между несущей и дисперсной фазами: частица-частица и частица-сетка. Ранее в вычислительных экспериментах было установлено, что для малых времен релаксации в подходе частица-частица имеет место избыточная диссипация волн, а подход частица-сетка свободен от этого недостатка. В работе впервые дано объяснение этому явлению средствами вычислительной математики.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- V. P. Maslov, Asymptotic Methods and Perturbation Theory(Nauka, Moscow, 1988; Springer, New York, 1999).
- I. V. Andrianov and L. I. Manevitch, Asymptotology: Ideas, Methods, and Applications(Aslan, Moscow, 1994; Kluwer, Dordrecht, 2002).
- M. I. Vishik and L. A. Lyusternik, “Regular Degeneration and Boundary Layer for Linear Differential Equations with Small Parameter,” Usp. Mat. Nauk 12 (5), 3-122 (1957) [Russ. Math. Surv. 12 (5), 3-122 (1957)].
- A. L. Goldenveizer, Theory of Elastic Thin Shells(Nauka, Moscow, 1976; Pergamon Press, New York, 1961).
- A. B. Vasil’eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations(Nauka, Moscow, 1973) [in Russian].
- A. B. Vasil’eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations(Vysshaya Shkola, Moscow, 1990) [in Russian].
- A. Nayfeh, Perturbation Methods(Wiley, New York, 1973; Mir, Moscow, 1976).
- S. A. Lomov, Introduction to the General Theory of Singular Perturbations(Nauka, Moscow, 1981; Am. Math. Soc. Vol. 112, Providence, 1992).
- E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers(Boole Press, Dublin, 1980; Mir, Moscow, 1983).
- L. Govindarao, Parameter Uniform Numerical Methods for Singularly Perturbed Parabolic Partial Differential Equations , PhD Thesis in Mathematics and Statistics (National Institute of Technology, Rourkela, India, 2019).
- N. N. Nefedov and N. N. Deryugina, “The Existence of a Boundary-Layer Stationary Solution to a Reaction-Diffusion Equation with Singularly Perturbed Neumann Boundary Condition,” Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 5, 30-34 (2020) [Moscow Univ. Phys. Bull. 75 (5), 409-414 (2020)].
doi 10.3103/S0027134920050185
- A. V. Nesterov and O. V. Shuliko, “ Asymptotic Behavior of the Solution of a Weakly Nonlinear System of Differential Equations of “Reaction-Diffusion” Type,” Mat. Model. 16 (8), 50-58 (2004).
- A. I. Zadorin, Finite-Difference Schemes for Nonlinear Differential Equations with a Small Parameter in Bounded and Unbounded Domains , Doctoral Thesis in Physics and Mathematics (Inst. Comput. Math. Math. Geophys., Novosibirsk, 2000).
- V. D. Liseikin, Grid Generation Methods (Springer, Cham, 2017).
doi 10.1007/978-3-319-57846-0
- N. V. Kopteva, A Posteriori and a Priori Estimates of Finite Element Solutions of Some Singularly Perturbed Equations on Anisotropic Meshes. Doctoral Thesis in Physics and Mathematics (University of Limerik, Ireland, 2018).
https://www.keldysh.ru/council/3/D00202403/kopteva_diss.pdf . Cited May 17, 2025.
- M. V. Alekseev, “Numerical Algorithms for Solving Two-Phase Flows Based on Relaxation Baer-Nunziato Model,” Numerical Methods and Programming. 24 (2), 182-194 (2023).
doi 10.26089/NumMet.v24r214
- V. N. Snytnikov, E. E. Peskova, and O. P. Stoyanovskaya, “Mathematical Model of a Two-Temperature Medium of Gas-Solid Nanoparticles with Laser Methane Pyrolysis,” Mat. Model. 35 (4), 24-50 (2023) [Math. Models Comput. Simul. 15 (5), 877-893 (2023)].
doi 10.1134/S2070048223050095
- V. Akimkin, E. Vorobyov, Y. Pavlyuchenkov, and O. Stoyanovskaya, “Gravitoviscous Protoplanetary Discs with a Dust Component -- IV. Disc Outer Edges, Spectral Indices, and Opacity Gaps,” Mon. Not. R. Astron. Soc. 499 (4), 5578-5597 (2020).
doi 10.1093/mnras/staa3134
- E. I. Vorobyov, V. G. Elbakyan, A. Johansen, et al., “Formation of Pebbles in (Gravito-)Viscous Protoplanetary Disks with Various Turbulent Strengths,” Astron. Astrophys. 670. Article Number A81 (2023).
doi 10.1051/0004-6361/202244500
- S. S. Khrapov, “Nonlinear Dynamics of Acoustic Instability in a Vibrationally Excited Gas: Influence of Relaxation Time and Structure of Shock Waves,” Physical-Chemical Kinetics in Gas Dynamics. 25 (7) (2024).
http://chemphys.edu.ru/issues/2024-25-7/articles/1151 . Cited May 17, 2025.
- A. G. Petrova, “Asymptotic Analysis of Viscoelastic Fluid Models with Two Small Relaxation Parameters,” Zh. Prikl. Mekh. Tekh. Fiz. 65, No. 5, 157-168 (2024) [J. Appl. Mech. Tech. Phys. 65 (5), 933-943 (2024)].
doi 10.1134/S0021894424050146
- T.-P. Liu, “Hyperbolic Conservation Laws with Relaxation,” Commun. Math. Phys. 108, 153-175 (1987).
doi 10.1007/BF01210707
- F. E. Marble, “Dynamics of Dusty Gases,” Annu. Rev. Fluid Mech. 2, 397-446 (1970).
doi 10.1146/annurev.fl.02.010170.002145
- D. V. Sadin, “A Method for Computing Heterogeneous Wave Flows with Intense Phase Interaction,” Zh. Vychisl. Mat. Mat. Fiz. 38, N 6, 1033-1039 (1998) [Comput. Math. Math. Phys. 38 (6), 987-993 (1998)].
- S. Jin, “Asymptotic Preserving (AP) Schemes for Multiscale Kinetic and Hyperbolic Equations: A Review,” in Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M&MKT) , Porto Ercole (Grosseto, Italy). 2010. 177-216.
- P. Degond and F. Deluzet, “Asymptotic-Preserving Methods and Multiscale Models for Plasma Physics,” J. Comput. Phys. 336, 429-457 (2017).
doi 10.1016/j.jcp.2017.02.009
- G. Laibe and D. J. Price, “Dusty Gas with Smoothed Particle Hydrodynamics -- I. Algorithm and Test Suite,” Mon. Not. R. Astron. Soc. 420 (3), 2345-2364 (2012).
doi 10.1111/j.1365-2966.2011.20202.x
- J. J. Monaghan, “Smoothed Particle Hydrodynamics,” Rep. Prog. Phys. 68 (8), 1703-1759 (2005).
doi 10.1088/0034-4885/68/8/R01
- T. Demidova, T. Savvateeva, S. Anoshin, et al., “Implementation of Dusty Gas Model Based on Fast and Implicit Particle-Mesh Approach SPH-IDIC in Open-Source Astrophysical Code GADGET-2,” in Lecture Notes in Computer Science (Springer, Cham, 2023), Vol. 14389, pp. 195-208.
doi 10.1007/978-3-031-49435-2_14
- O. P. Stoyanovskaya, N. V. Snytnikov, and V. N. Snytnikov, “An Algorithm for Solving Transient Problems of Gravitational Gas Dynamics: A Combination of the SPH Method with a Grid Method of Gravitational Potential Computation,” Numerical Methods and Programming. 16 (1), 52-60 (2015).
doi 10.26089/NumMet.v16r106
- O. P. Stoyanovskaya, “Numerical Simulation of Gravitational Instability Development and Clump Formation in Massive Circumstellar Disks Using Integral Characteristics for the Interpretation of Results,” Numerical Methods and Programming. 17 (3), 339-352 (2016).
doi 10.26089/NumMet.v17r332
- V. Springel, “The Cosmological Simulation Code GADGET-2,” Mon. Not. R. Astron. Soc. 364 (4), 1105-1134 (2005).
doi 10.1111/j.1365-2966.2005.09655.x
- D. J. Price, J. Wurster, T. S. Tricco, et al., “Phantom: A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics,” Publ. Astron. Soc. Aust. 35, id.e031 (2018).
doi 10.1017/pasa.2018.25
- C. Zhang, M. Rezavand, Y. Zhu, et al., “SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics,” Comput. Phys. Commun. 267, Article Number 108066 (2021).
doi 10.1016/j.cpc.2021.108066
- J. Monaghan and A. Kocharyan, “SPH Simulation of Multi-Phase Flow,” Comput. Phys. Commun. 87 (1-2), 225-235 (1995).
doi 10.1016/0010-4655(94)00174-Z
- O. P. Stoyanovskaya, T. A. Glushko, N. V. Snytnikov, and V. N. Snytnikov, “Two-Fluid Dusty Gas in Smoothed Particle Hydrodynamics: Fast and Implicit Algorithm for Stiff Linear Drag,” Astron. Comput. 25, 25-37 (2018).
doi 10.1016/j.ascom.2018.08.004
- O. Stoyanovskaya, M. Davydov, M. Arendarenko, et al., “Fast Method to Simulate Dynamics of Two-Phase Medium with Intense Interaction between Phases by Smoothed Particle Hydrodynamics: Gas-Dust Mixture with Polydisperse Particles, Linear Drag, One-Dimensional Tests,” J. Comput. Phys. 430, Article Number 110035 (2021).
doi 10.1016/j.jcp.2020.110035
- J. P. Morris, “A Study of the Stability Properties of Smooth Particle Hydrodynamics,” Publ. Astron. Soc. Aust. 13 (1), 97-102 (1996).
doi 10.1017/S1323358000020610
- S.-H. Cha and A. P. Whitworth, “Implementations and Tests of Godunov-Type Particle Hydrodynamics,” Mon. Not. R. Astron. Soc. 340 (1), 73-90 (2003).
doi 10.1046/j.1365-8711.2003.06266.x
- W. Dehnen and H. Aly, “Improving Convergence in Smoothed Particle Hydrodynamics Simulations without Pairing Instability,” Mon. Not. R. Astron. Soc. 425 (2), 1068-1082 (2012).
doi 10.1111/j.1365-2966.2012.21439.x
- O. P. Stoyanovskaya, V. V. Lisitsa, S. A. Anoshin, et al., “Dispersion Analysis of SPH as a Way to Understand Its Order of Approximation,” J. Comput. Appl. Math. 438, Article Number 115495 (2024).
doi 10.1016/j.cam.2023.115495
- T. V. Markelova, M. S. Arendarenko, E. A. Isaenko, and O. P. Stoyanovskaya, “Plane Sound Waves of Small Amplitude in a Gas-Dust Mixture with Polydisperse Particles,” Zh. Prikl. Mekh. Tekh. Fiz. 62, No. 4. 158-168 (2021) [J. Appl. Mech. Tech. Phys. 62 (4), 663-672 (2021)].
doi 10.1134/S0021894421040167
- O. P. Stoyanovskaya, V. V. Grigoryev, T. A. Savvateeva, et al., “Multi-Fluid Dynamical Model of Isothermal Gas and Buoyant Dispersed Particles: Monodisperse Mixture, Reference Solution of DustyWave Problem as Test for CFD-Solvers, Effective Sound Speed for High and Low Mutual Drag,” Int. J. Multiph. Flow 149, Article Number 103935 (2022).
doi 10.1016/j.ijmultiphaseflow.2021.103935
- T. V. Markelova and O. P. Stoyanovskaya, “Plane Sound Waves in a Macroscopic Model of a Two-Velocity Two-Temperature Gas-Dust Mixture,” J. Appl. Mech. Tech. Phys. 2025 (in press).
- O. P. Stoyanovskaya, G. D. Turova, and N. M. Yudina, “Dispersion and Group Analysis of Dusty Burgers Equations,” Lobachevskii J. Math. 45 (1), 108-118 (2024).
doi 10.1134/s1995080224010505
- O. P. Stoyanovskaya, O. A. Burmistrova, M. S. Arendarenko, and T. V. Markelova, “Dispersion Analysis of SPH for Parabolic Equations: High-Order Kernels against Tensile Instability,” J. Comput. Appl. Math. 457, Article Number 116316 (2025).
doi 10.1016/j.cam.2024.116316
- R. Fatehi and M. T. Manzari, “Error Estimation in Smoothed Particle Hydrodynamics and a New Scheme for Second Derivatives,” Comput. Math. Appl. 61 (2), 482-498 (2011).
doi 10.1016/j.camwa.2010.11.028
- G. Laibe and D. J. Price, “Dusty Gas with Smoothed Particle Hydrodynamics -- II. Implicit Timestepping and Astrophysical Drag Regimes,” Mon. Not. R. Astron. Soc. 420 (3), 2365-2376 (2012).
doi 10.1111/j.1365-2966.2011.20201.x
- P. Lorén-Aguilar and M. R. Bate, “Two-Fluid Dust and Gas Mixtures in Smoothed Particle Hydrodynamics II: an Improved Semi-Implicit Approach,” Mon. Not. R. Astron. Soc. 454 (4), 4114-4119 (2015).
doi 10.1093/mnras/stv2262
- R. A. Booth, D. Sijacki, and C. J. Clarke, “Smoothed Particle Hydrodynamics Simulations of Gas and Dust Mixtures,” Mon. Not. R. Astron. Soc. 452 (4), 3932-3947 (2015).
doi 10.1093/mnras/stv1486
- M. Hutchison, D. J. Price, and G. Laibe, “MULTIGRAIN: a Smoothed Particle Hydrodynamic Algorithm for Multiple Small Dust Grains and Gas,” Mon. Not. R. Astron. Soc. 476 (2), 2186-2198 (2018).
doi 10.1093/mnras/sty367
- D. J. Price and G. Laibe, “A Solution to the Overdamping Problem when Simulating Dust-Gas Mixtures with Smoothed Particle Hydrodynamics,” Mon. Not. R. Astron. Soc. 495 (4), 3929-3934 (2020).
doi 10.1093/mnras/staa1366
- D. Elsender and M. R. Bate, “An Implicit Algorithm for Simulating the Dynamics of Small Dust Grains with Smoothed Particle Hydrodynamics,” Mon. Not. R. Astron. Soc. 529 (4), 4455-4467 (2024).
doi 10.1093/mnras/stae722
- O. Burmistrova, T. Markelova, M. Arendarenko, and O. Stoyanovskaya, “A New Method for Approximating of First Derivatives in Smoothed Particle Hydrodynamics: Theory and Practice for Linear Transport Equation,” Lobachevskii J. Math. 46, 43-54 (2025).
doi 10.1134/S1995080224608312
- M. Arendarenko, A. Dzhanbekova, S. Kotov, et al., “SymDR: Symbol Computer Algebra Library for Generation of Classical and Approximate Dispersion Relations for Systems of Partial Differential Equations,” Lobachevskii J. Math. 46, 1-12 (2025).
doi 10.1134/S1995080224608579