Сравнение подходов к динамической адаптации расчетной сетки на распределенной вычислительной системе
Авторы
-
С. К. Григорьев
-
А. А. Бай
Ключевые слова:
динамическая адаптация
octree-сетки
параллельные вычисления
Аннотация
В статье обсуждаются блочный и листовой подходы к динамической адаптации регулярных сеток. Целью работы является сравнение эффективности подходов при решении задач на распределенной вычислительной системе. Приведены описания подходов и особенностей реализации разностных схем с их помощью. Произведено сравнение эффективности подходов по быстродействию и количеству сеточных элементов при выполнении трехмерных расчетов развития неустойчивости типа Рэлея–Тейлора. При моделировании применена схема предиктор-корректор с использованием линейной интерполяции и метода HLL (схема годуновского типа). Адаптация сетки выполнялась в области перемешивания веществ. Проведены расчеты, результаты которых соответствуют априорным оценкам эффективности подходов.
Раздел
Параллельные программные средства и технологии
Библиографические ссылки
- M. J. Berger and P. Colella, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” J. Comput. Phys. 82 (1), 64-84 (1989).
doi 10.1016/0021-9991(89)90035-1begincomment
- M. Zingale, A. S. Almgren, M. Barrios Sazo, et al., “The Castro AMR Simulation Code: Current and Future Developments,” J. Phys.: Conf. Ser. 1623, Article Number 012021 (2020).
doi 10.1088/1742-6596/1623/1/012021endcomment
- J. Peraire and A. T. Patera, “Bounds for Linear-Functional Outputs of Coercive Partial Differential Equations: Local Indicators and Adaptive Refinement,” in Studies in Applied Mechanics (Elsevier, Amsterdam, 1998), Vol. 47, pp. 199-216.
- S. A. Soukov, “Visualization of the CFD Calculations Results on Adaptive Mixed Meshes,” Sci. Vis. 13 (5), 52-64 (2021).
doi 10.26583/sv.13.5.05
- C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees,” SIAM J. Sci. Comput. 33 (3), 1103-1133 (2011).
doi 10.1137/100791634
- J. Holke, C. Burstedde, D. Knapp, et al., “t8code v. 1.0 - Modular Adaptive Mesh Refinement in the Exascale Era,” in Proc. SIAM Int. Meshing Round Table 2023, Amsterdam, Netherlands, March 6-9, 2023
https://github.com/DLR-AMR/t8code . Cited January 12, 2025.
- R. Wünsch, S. Walch, F. Dinnbier, and A. Whitworth, “Tree-Based Solvers for Adaptive Mesh Refinement Code Flash – I: Gravity and Optical Depths,” Mon. Not. R. Astron. Soc. 475 (3), 3393-3418 (2018).
doi 10.1093/mnras/sty015
- Y. Y. Klein, “Construction of a Multidimensional Parallel Adaptive Mesh Refinement Special Relativistic Hydrodynamics Code for Astrophysical Applications.’’
doi 10.48550/arXiv.2310.02331
- P. MacNeice, K. M. Olson, C. Mobarry, et al., “PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit,” Comput. Phys. Commun. 126 (3), 330-354 (2000).
doi 10.1016/S0010-4655(99)00501-9
- W. Zhang, A. Almgren, V. Beckner, et al., “AMReX: A Framework for Block-Structured Adaptive Mesh Refinement,” J. Open Source Softw. 4 (37), Article Number 1370 (2019).
doi 10.21105/joss.01370
- M. Adams, P. Colella, D. T. Graves, et al., Chombo Software Package for AMR Applications Design Document , Technical Report LBNL-6616E (Lawrence Berkeley Nat. Lab., Berkeley, 2015).
https://crd.lbl.gov/assets/pubs_presos/chomboDesign.pdf . Cited January 12, 2025.
- G. L. Bryan, M. L. Norman, B. W. O’Shea, et al., “Enzo: An Adaptive Mesh Refinement Code for Astrophysics,” Astrophys. J. Suppl. Ser. 211 (2), Article Number 19 (2014).
doi 10.1088/0067-0049/211/2/19
- SAMRAI: Structured Adaptive Mesh Refinement Application Infrastructure (2017).
https://computing.llnl.gov/projects/samrai . Cited January 12, 2025.
- R. D. Hornung and S. R. Kohn, “Managing Application Complexity in the SAMRAI Object-Oriented Framework,” Concurr. Comput. Pract. Exp. 14 (5), 347-368 (2002).
doi 10.1002/cpe.652
- D. S. Abdi, A. Almgren, F. X. Giraldo, and I. Jankov, “Comparison of Adaptive Mesh Refinement Techniques for Numerical Weather Prediction.’’
doi 10.48550/arXiv.2404.16648
- G. Karypis, “METIS and ParMETIS,” in Encyclopedia of Parallel Computing (Springer, Boston, 2011), pp. 1117-1124.
- E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).
doi 10.1007/b79761
- Center for Collective Use of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences. Hybrid Supercomputer K60.
https://ckp.kiam.ru . Cited January 12, 2025.