Квантово-химическое моделирование высокоэнергетических фтординитрометилазоксисоединений
Авторы
-
В. М. Волохов
-
В. В. Парахин
-
Е. С. Амосова
-
Д. Б. Лемперт
-
В. В. Воеводин
-
И. И. Акостелов
Ключевые слова:
высокопроизводительные вычисления
квантово-химические расчеты
высокоэнергетические соединения
энтальпия образования
фтординитрометил-ONN-азокси-соединения
Аннотация
Работа посвящена поиску и исследованию новых высокоэнергетических материалов. Проведены исследования физико-химических свойств серии фтординитрометил-ONN-азокси-соединений. При помощи параллельных высокопроизводительных квантово-химических вычислений проведена оптимизация геометрии структур с использованием теории функционала плотности и расчет ИК-спектров поглощения. Энтальпия образования в газовой фазе исследуемых соединений была определена с использованием методов реакции атомизации и реакции образования изучаемых соединений из простых веществ. Проведен анализ зависимости энтальпии образования в газовой фазе от структурных особенностей соединений. Проведено сравнение различных квантово-химических методов, реализованных в программных комплексах Gaussian 09 и NWChem по точности и временн´ым затратам. Проведена оценка использования QSPR модели для определения энтальпии сублимации.
Раздел
Параллельные программные средства и технологии
Библиографические ссылки
- L. Pei, C.-P. Xie, P. Yin, and S.-P. Pang, “N-Amination of Nitrogen-Rich Scaffolds: from Single N-N Bond Formation to Diverse Energetic Functionalization Strategies,” Energ. Mater. Front. 2 (4), 306-316 (2021).
doi 10.1016/j.enmf.2021.11.003
- D. Herweyer, J. L. Brusso, and M. Murugesu, “Modern Trends in “Green” Primary Energetic Materials,” New J. Chem. 45 (23), 10150-10159 (2021).
doi 10.1039/D1NJ01227D
- J. J. Sabatini and E. C. Johnson, “A Short Review of Nitric Esters and Their Role in Energetic Materials,” ACS Omega 6 (18), 11813-11821 (2021).
doi 10.1021/acsomega.1c01115
- Y. Zhou, H. Gao, and J. M. Shreeve, “Dinitromethyl Groups Enliven Energetic Salts,” Energ. Mater. Front. 1 (1), 2-15 (2020).
doi 10.1016/j.enmf.2020.04.001
- Y. Qu and S. P. Babailov, “Azo-Linked High-Nitrogen Energetic Materials,” J. Mater. Chem. A. 6 (5), 1915-1940 (2018).
doi 10.1039/C7TA09593G
- J. Zhou, J. Zhang, B. Wang, et al., “Recent Synthetic Efforts towards High Energy Density Materials: How to Design High-Performance Energetic Structures?’’ FirePhysChem. 2 (2), 83-139 (2022).
doi 10.1016/j.fpc.2021.09.005
- O. A. Luk’yanov, Yu. B. Salamonov, Yu. T. Struchkov, et al., “Aryl-NNO-Azoxy-α-Nitro- and -α, α-Dinitro-Alkanes,” Mendeleev Commun. 2 (2), 52-53 (1992).
doi 10.1070/MC1992v002n02ABEH000127
- O. A. Luk’yanov, G. V. Pokhvisneva, T. V. Ternikova, et al., “Aliphatic α-Nitroalkyl-ONN-Azoxy Compounds and Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 10, 2000-2006 (2009) [Russ. Chem. Bull. 58 (10), 2063-2069 (2009)].
doi 10.1007/s11172-009-0283-0
- O. A. Luk’yanov, G. V. Pokhvisneva, T. V. Ternikova, et al., “α-Nitroalkyl-ONN-Azoxyfurazanes and some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 8, 1678-1686 (2011) [Russ. Chem. Bull. 60 (8), 1703-1711 (2011)].
doi 10.1007/s11172-011-0254-0
- O. A. Luk’yanov, V. V. Parakhin, G. V. Pokhvisneva, and T. V. Ternikova, “3-Amino-4-(α-Nitroalkyl-ONN-Azoxy)Furazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 2, 353-357 (2012) [Russ. Chem. Bull. 61 (2), 355-359 (2012)].
doi 10.1007/s11172-012-0049-y
- O. A. Luk’yanov, G. V. Pokhvisneva, T. V. Ternikova, and N. I. Shlykova, “3, 4-Bis(α-Nitroalkyl-ONN-Azoxy)Furazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 2, 358-363 (2012) [Russ. Chem. Bull. 61 (2), 360-365 (2012)].
doi 10.1007/s11172-012-0050-5
- O. A. Luk’yanov and V. V. Parakhin, “3-(α-Nitroalkyl- and α-Polynitroalkyl-ONN-Azoxy)- 4-Nitraminofurazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 8, 1566-1574 (2012) [Russ. Chem. Bull. 61 (8), 1582-1590 (2012)].
doi 10.1007/s11172-012-0210-7
- O. A. Luk’yanov, G. V. Pokhvisneva, and T. V. Ternikova, “Bis(Nitro- and Polynitromethyl-ONN-azoxy) Azoxyfurazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 8, 1767-1770 (2012) [Russ. Chem. Bull. 61 (8), 1783-1786 (2012)].
doi 10.1007/s11172-012-0245-9
- V. V. Parakhin and O. A. Luk’yanov, “4-Hydroxy-3-(α-Nitroalkyl-ONN-Azoxy)Furazans and Some Their O-Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 2, 514-518 (2013) [Russ. Chem. Bull. 62 (2), 516-520 (2013)].
doi 10.1007/s11172-013-0071-8
- V. V. Parakhin and O. A. Luk’yanov, “4-Hydroxy-3-(Polynitromethyl-ONN-Azoxy)Furazans and Some of Their Derivatives,” Russ. Chem. Bull. 62 (9), 2007-2012 (2013).
doi 10.1007/s11172-013-0291-y
- O. A. Luk’yanov, G. V. Pokhvisneva, and T. V. Ternikova, “A Novel Method to Access Dinitromethyl-ONN-Azoxy Compounds,” Izv. Akad. Nauk, Ser. Chem. No. 1, 83-86 (2015) [Russ. Chem. Bull. 64 (1), 83-86 (2015)].
doi 10.1007/s11172-015-0824-7
- O. A. Luk’yanov, G. V. Pokhvisneva, and T. V. Ternikova, “Nitro-Substituted Bis (Methyl-ONN-Azoxyfurazanyl) Furoxans,” Izv. Akad. Nauk, Ser. Chem. No. 1, 137-141 (2015) [Russ. Chem. Bull. 64 (1), 137-141 (2015)].
doi 10.1007/s11172-015-0832-7
- J. Zhang, F. Bi, P. Lian, et al., “Synthesis and Characterization of an Energetic Compound 3, 3’-Bis (Fluoronitromethyl-ONN-Azoxy) Azoxyfurazan,” Chin. J. Org. Chem. 37 (10), 2736-2744 (2017).
doi 10.6023/cjoc201701014
- V. Volokhov, I. Akostelov, V. Parakhin, et al., “Quantum-Chemical Simulation of High-Energy Azoxy Compounds,” in Communications in Computer and Information Science (Springer, Cham, 2023), Vol. 1868, pp. 231-243.
doi 10.1007/978-3-031-38864-4_16
- V. V. Parakhin, V. M. Volokhov, E. S. Amosova, et al., “Some High-Energy Trinitromethyl-ONN-Furazans as Binder Plasticizers in Model Solid Composite Propellants,” Chem. Fiz. 43 (5), 34-47 (2024) [Russ. J. Phys. Chem. B. 18 (3), 697-706 (2024)].
doi 10.1134/S1990793124700088
- G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Propellants(CRC Press, London, 2003).
doi 10.1201/9781482288261
- J. P. Agrawal and R. D. Hodgson, Organic Chemistry of Explosives(Wiley, Hoboken, 2007).
- A. L. Fridman, V. D. Surkov, and S. S. Novikov, “Chemistry of α-Halogenonitroalkanes,” Usp. Chem. No. 11, 2159-2187 (1980) [Russ. Chem. Rev. 49 (11), 1068-1083 (1980)].
doi 10.1070/RC1980v049n11ABEH002528
- H. Feuer and A. Nielsen (Eds.), Nitro Compounds. Recent Advances in Synthesis and Chemistry (VCH Publ., New York, 1990).
- S. Wang, C. Li, T. Lu, et al., “Fused Triazolotriazine Bearing a Gem -Dinitro Group: a Promising High Energy Density Material,” New J. Chem. 45 (22), 9766-9769 (2021).
doi 10.1039/D1NJ01051D
- H. Huo, J. Zhang, J. Dong, et al., “A Promising Insensitive Energetic Material Based on a Fluorodinitromethyl Explosophore Group and 1, 2, 3, 4-Tetrahydro-1, 3, 5-Triazine: Synthesis, Crystal Structure and Performance,” RSC Adv. 10 (20), 11816-11822 (2020).
doi 10.1039/D0RA00474J
- L. Zhai, J. Zhang, M. Wu, et al., “Balancing Good Oxygen Balance and High Heat of Formation by Incorporating of -textC(NO_2)_2F Moiety and Tetrazole into Furoxan Block,” J. Mol. Struct. 1222, Article Number 128934 (2020).
doi 10.1016/j.molstruc.2020.128934
- J. Zhang, H. Huo, T. Yu, et al., “Comparative Thermal Research on Chlorodinitromethyl and Fluorodinitromethyl Explosophoric Groups Based Insensitive Energetic Materials,” FirePhysChem 1 (1), 54-60 (2021).
doi 10.1016/j.fpc.2021.02.005
- N. V. Palysaeva, A. G. Gladyshkin, I. A. Vatsadze, et al., “N-(2-Fluoro-2, 2-Dinitroethyl)Azoles: a Novel Assembly of Diverse Explosophoric Building Blocks for Energetic Compound Design,” Org. Chem. Front. 6 (2), 249-255 (2019).
doi 10.1039/c8qo01173g
- W. Wang, G. Cheng, H. Xiong, and H. Yang, “Functionalization of Fluorodinitroethylamino Derivatives Based on Azole: A New Family of Insensitive Energetic Materials,” New J. Chem. 42 (4), 2994-3000 (2018).
doi 10.1039/C7NJ05009G
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision B.01 (Gaussian Inc., Pittsburgh, 2009).
- M. Valiev, E. J. Bylaska, N. Govind, et al., “NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations,” Comput. Phys. Commun. 181 (9), 1477-1489 (2010).
doi 10.1016/j.cpc.2010.04.018
- A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys. 98 (7), 5648-5652 (1993).
doi 10.1063/1.464913
- B. G. Johnson, P. M. W. Gill, and J. A. Pople, “The Performance of a Family of Density Functional Methods,” J. Chem. Phys. 98 (7), 5612-5626 (1993).
doi 10.1063/1.464906
- L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 Theory Using Reduced Order Perturbation Theory,” J. Chem. Phys. 127 (12), Article Number 124105 (2007).
doi 10.1063/1.2770701
- L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “GnTheory,” Comput. Mol. Sci. 1 (5), 810-825 (2011).
doi 10.1002/wcms.59
- L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 Theory,” J. Chem. Phys. 126 (8), Article Number 084108 (2007).
doi 10.1063/1.2436888
- Vibrational Frequency Scaling Factors.
https://cccbdb.nist.gov/vsfx.asp . Cited December 12, 2024.
- M. Bagheri, M. Bagheri, A. H. Gandomi, and A. Golbraikh, “Simple yet Accurate Prediction Method for Sublimation Enthalpies of Organic Contaminants Using Their Molecular Structure,” Thermochim. Acta 543, 96-106 (2012).
doi 10.1016/j.tca.2012.05.008
- V. V. Parakhin, V. M. Volokhov, E. S. Amosova, and D. B. Lempert, “Energetic Potential of a Series of Fluorodinitromethyl-ONN-Azoxyfurazans as Binder Plasticizers in Model Solid Composite Propellants,” Combustion, Explosion, and Shock Waves (in print).
- H. Wei, J. Zhang, C. He, and J. M. Shreeve, “Energetic Salts Based on Furazan-Functionalized Tetrazoles: Routes to Boost Energy,” Chem. – Eur. J. 21 (23), 8607-8612 (2015).
doi 10.1002/chem.201500513
- T. M. Klapötke and B. Krumm, “Azide-Containing High Energy Materials,” in Organic Azides: Syntheses and Applications (Wiley, Chichester, 2010), pp. 391-413.
- Y. Tang and J. M. Shreeve, “Nitroxy/Azido-Functionalized Triazoles as Potential Energetic Plasticizers,” Chem. - Eur. J. 21 (19), 7285-7291 (2015).
doi 10.1002/chem.201500098
- O. A. Luk’yanov, V. V. Parakhin, N. I. Shlykova, et al., “Energetic N-Azidomethyl Derivatives of Polynitro Hexaazaisowurtzitanes Series: GL-20 Analogues Having the Highest Enthalpy,” New J. Chem. 44 (20), 8357-8365 (2020).
doi 10.1039/D0NJ01453B
- Vl. V. Voevodin, A. S. Antonov, D. A. Nikitenko, et al., “Supercomputer Lomonosov-2: Large-Scale, Deep Monitoring and Fine Analytics for the User Community,” Supercomput. Front. Innov. 6 (2), 4-11 (2019).
doi 10.14529/jsfi190201
- D. A. Nikitenko, V. V. Voevodin, and S. A. Zhumatiy, “Deep Analysis of Job State Statistics on ’Lomonosov-2’ Supercomputer,” Supercomput. Front. Innov. 5 (2), 4-10 (2018).
doi 10.14529/jsfi180201