Численное устранение шума и нечеткости изображений с помощью приближенной модели движения под влиянием средней кривизны с весом
Авторы
-
А. А. Тимонов
Ключевые слова:
устранение шума и нечеткости изображений
полная вариация
средняя кривизна
геометрическое уравнение
численные эксперименты
Аннотация
Предложена и численно реализована новая математическая модель устранения шума и нечеткости изображений. Она основана на геометрическом дифференциальном уравнении, которое описывает движение поверхности уровня его решения под влиянием средней кривизны с весом. Численные эксперименты проводятся с целью демонстрации вычислительной эффективности предлагаемого метода в сравнении с методом полной вариации с весом и VH-регуляризацией.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- E. K. Oikonomou, H. W. West, and C. Antoniades, “Cardiac Computed Tomography: Assessment of Coronary Inflammation and Other Plaque Features,” Arterioscler. Throm. Vasc. Biol. 39 (11), 2207-2219 (2019).
doi 10.1161/ATVBAHA.119.312899
- S. Kulcarni, J. A. Rumberger, and S. Jha, “Electron Beam CT: A Historical Review,” Am. J. Roentgenol. 216 (5), 1222-1228 (2021).
doi 10.2214/AJR.19.22681
- I. F. Dorofeev, “On the Solution of Integral Equations of the First Kind in the Class of Functions of Bounded Variation,” Dokl. Akad. Nauk SSSR 244 (6), 1303-1307 (1979).
- A. V. Goncharsky and V. V. Stepanov, “On Uniformly Approximating a Solution of Bounded Variation for Ill-Posed Problems,” Dokl. Akad. Nauk SSSR 248 (1), 20-22 (1979).
- A. S. Leonov, “On the Regularization of Ill-Posed Problems with Discontinuous Solutions and an Application of This Methodology for the Solution of Some Nonlinear Equations,” Dokl. Akad. Nauk SSSR 250 (1), 31-35 (1980).
- A. S. Leonov, “Numerical Piecewise-Uniform Regularization for Two-Dimensional Ill-Posed Problems,” Inverse Probl. 15 (5), 1165-1176 (1999).
doi 10.1088/0266-5611/15/5/304
- L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear Total Variation Based Noise Removal Algorithms,” Physica D: Nonlinear Phenomena 60 (1-4), 259-268 (1992).
doi 10.1016/0167-2789(92)90242-F
- D. L. Phillips, “A Technique for the Numerical Solution of Certain Integral Equations of the First Kind,” J. ACM 9 (1), 84-97 (1962).
doi 10.1145/321105.321114
- V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications (De Gruyter, Berlin, 2002).
doi 10.1515/9783110944822
- E. Giusti, Minimal Surfaces and Functions of Bounded Variation (Springer, New York, 1984).
doi 10.1007/978-1-4684-9486-0
- A. Chambolle, “An Algorithm for Total Variation Minimization and Applications,” J. Math. Imaging Vis. 20 (1-2), 89-97 (2004).
doi 10.1023/B: JMIV.0000011325.36760.1e
- W. Ring, “Structural Properties of Solutions to Total Variation Regularization Problems,” ESAIM: Math. Model. Numer. Anal. 34 (4), 799-810 (2000).
doi 10.1051/m2an: 2000104
- M. Nikolova, “Local Strong Homogeneity of a Regularized Estimator,” SIAM J. Appl. Math. 61 (2), 633-658 (2000).
doi 10.1137/S0036139997327794
- L. Vese, “A Study in the BV Space of a Denoising-Deblurring Variational Problem,” Appl. Math. Optim. 44 (2), 131-161 (2001).
doi 10.1007/s00245-001-0017-7
- Y. G. Chen, Y. Giga, and S. Goto, “Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations,” J. Differ. Geom. 33 (3), 749-786 (1991).
doi 10.4310/jdg/1214446564
- L. C. Evans and J. Spruck, “Motion of Level Sets by Mean Curvature. I,” J. Differ. Geom. 33 (3), 635-681 (1991).
doi 10.4310/jdg/1214446559
- P. Sternberg and W. P. Ziemer, “Generalized Motion by Curvature with a Dirichlet Condition,” J. Differ. Equ. 114 (2), 580-600 (1994).
doi 10.1006/jdeq.1994.1162
- A. Lichnewssky and R. Temam, “Pseudosolutions of the Time-Dependent Minimal Surface Problem,” J. Differ. Equ. 30 (3), 340-364 (1978).
doi 10.1016/0022-0396(78)90005-0
- G. Chavent and K. Kunisch, “Regularization of Linear Least Squares Problems by Total Bounded Variation,” ESAIM: Control Optim. Calc. Var. 2, 359-376 (1997).
doi 10.1051/cocv: 1997113
- R. L. Jerrard, A. Moradifam, and A. I. Nachman, “Existence and Uniqueness of Minimizers of General Least Gradient Problems,” J. Reine Angew. Math. 2018 (734), 71-97 (2018).
doi 10.1515/crelle-2014-0151
- O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type (Amer. Math. Soc., Providence, 1968).
- E. Rothe, “Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben,” Math. Annal. 102, 650-670 (1930).
- O. A. Ladyzhenskaya, “Solution of the First Boundary Problem in the Large for Quasi-Linear Parabolic Equations,” Tr. Mosk. Mat. Obs. 7, 149-177 (1958).
- T. D. Ventzel, “The First Boundary Problem and the Cauchy Problem for Quasi-Linear Parabolic Equations with Several Space Variables,” Mat. Sb. N. S. 41 (3), 499-520 (1957).
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 2001).
doi 10.1007/978-3-642-61798-0
- J. Schauder, “Über Lineare Elliptische Differentialgleichungen Zweiter Ordnung,” Math. Z. 38 (1), 257-282 (1934).
doi 10.1007/BF01170635
- J. H. Bramble, B. E. Hubbard, and V. Thomée, “Convergence Estimates for Essentially Positive Type Discrete Dirichlet Problems,” Math. Comput. 23 (108), 695-709 (1969).
- B. S. Jovanović and E. Süli, Analysis of Finite Difference Schemes for Linear Partial Differential Equations with Generalized Solutions (Springer, London, 2014).
doi 10.1007/978-1-4471-5460-0
- A. A. Samarskii, “On the Convergence and Accuracy of Homogeneous Difference Schemes for One-Dimensional and Multidimensional Parabolic Equations,” USSR Comp. Math. Math. Phys. 2 (4), 654-696 (1963).
doi 10.1016/0041-5553(63)90534-2
- A. A. Samarskii, The Theory of Difference Schemes (CRC Press, Boca Raton, 2001).
doi 10.1201/9780203908518
- A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations , Vol. II: Iterative Methods (Birkh854user, Basel, 1989).
doi 10.1007/978-3-0348-9142-4
- M. Benzi and M. T^uma, “A Comparative Study of Sparse Approximate Inverse Preconditioners,” Appl. Num. Math. 30 (2-3), 305-340 (1999).
doi 10.1016/S0168-9274(98)00118-4
- M. Benzi, “Preconditioning Techniques for Large Linear Systems: A Survey,” J. Comput. Phys. 182 (2), 418-477 (2002).
doi 10.1006/jcph.2002.7176
- D. A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems (Wiley, New York, 1993).
doi 10.1002/9781118033210
- A. Timonov, “Numerical Solution of a Regularized Weighted Mean Curvature Flow Problem for Electrical Conductivity Imaging,” SIAM J. Sci. Comput. 41 (5), B1137-B1154 (2019).
doi 10.1137/18M1236071
- P. Athavale, R. Xu, P. Radau, et. al, “Multiscale Properties of Weighted Total Variation Flow with Applications to Denoising and Registration,” Med. Image Anal., 23 (1), 28-42 (2015).
doi 10.1016/j.media.2015.04.013