О погрешностях в PIC-методе при моделировании ленгмюровских колебаний
Авторы
-
Е. В. Чижонков
Ключевые слова:
бесстолкновительная плазма
нелинейные ленгмюровские колебания
аналитическое решение
численное моделирование
PIC-метод
разностный метод
анализ погрешностей
Аннотация
Построена тестовая задача, моделирующая нелинейные ленгмюровские колебания, возбуждаемые коротким мощным лазерным импульсом. Задача имеет аналитическое решение в лагранжевых координатах, которое может быть трансформировано в эйлеровы координаты, правда в специфической неявной форме. Для различных вариантов метода частиц в ячейке (particle-in-cell, PIC-метод), получены аналитические оценки погрешности, возникающей при сборке заряда от макрочастиц в центры ячеек. Кроме того, проведены численные эксперименты, иллюстрирующие качество этих оценок на модельной задаче. Дополнительно предложен новый разностный метод для модельной задачи и проведено сравнение его точности с этапом сборки заряда из PIC-метода.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Cham, 2016).
https://doi.org/10.1007/978-3-319-22309-4 . Cited February 3, 2024.
- A. A. Vlasov, “The Vibrational Properties of an Electron Gas,” Usp. Fiz. Nauk 93 (3), 444-470 (1967) [Sov. Phys. Usp. 10 (6), 721-733 (1968)].
doi 10.1070/PU1968v010n06ABEH003709
- T. D. Arber and R. G. L. Vann, “A Critical Comparison of Eulerian-Grid-Based Vlasov Solvers,” J. Comput. Phys. 180 (1), 339-357 (2002).
doi 10.1006/jcph.2002.7098
- F. Filbet and E. Sonnendrücker, “Comparison of Eulerian Vlasov Solvers,” Comput. Phys. Commun. 150 (3), 247-266 (2003).
doi 10.1016/S0010-4655(02)00694-X
- G. Dimarco and L. Pareschi, “Numerical Methods for Kinetic Equations,” Acta Numerica 23, 369-520 (2014).
doi 10.1017/S0962492914000063
- R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).
- C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation. In Series in Plasma Physics and Fluid Dynamics (CRC Press, Boca Raton, 2004).
- Yu. N. Grigor’ev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation by Particle-in-Cell Methods (Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].
- L. Tonks and I. Langmuir, “Oscillations in Ionized Gases,” Phys. Rev. 33 (2), 195-210 (1929).
doi 10.1103/PhysRev.33.195
- G.-H. Cottet and P.-A. Raviart, “Particle Methods for the One-Dimensional Vlasov-Poisson Equations,” SIAM J. Numer. Anal. 21 (1), 52-76 (1984).
doi 10.1137/0721003
- B. Wang, G. H. Miller, and P. Colella, “A Particle-in-Cell Method with Adaptive Phase-space Remapping for Kinetic Plasmas,” SIAM J. Sci. Comput. 33 (6), 3509-3537 (2011).
doi 10.1137/100811805
- V. A. Vshivkov, “The Approximation Properties of the Particles-in-Cells Method,” Zh. Vychisl. Mat. Mat. Fiz. 36 (4), 106-113 (1996) [Comput. Math. Math. Phys. 36 (4), 509-515 (1996)].
- A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer, Berlin, 1984).
https://link.springer.com/book/9783642692499 . Cited February 4, 2024.
- V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].
- R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic Press, New York, 1972).
- E. V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma (Fizmatlit, Moscow, 2018; CRC Press, Boca Raton, 2019).
- O. S. Rozanova and E. V. Chizhonkov, “Analytical and Numerical Solutions of One-Dimensional Cold Plasma Equations,” Zh. Vychisl. Mat. Mat. Fiz. 61 (9), 1508-1527 (2021). [Comput. Math. Math. Phys. 61 (9), 1485-1503 (2021)].
doi 10.1134/S0965542521090141
- A. A. Frolov and E. V. Chizhonkov, “On Numerical Simulation of Travelling Langmuir Waves in a Warm Plasma,” Mat. Model. 35 (11), 21-34 (2023).
doi 10.20948/mm-2023-11-02
- L. M. Gorbunov, “What Superpower Laser Pulses Are Needed for?’’ Priroda 21 (4), 11-20 (2007).
https://priroda.ras.ru/pdf/2007-04.pdf . Cited February 5, 2024.
- P. A. Mora and T. M. Antonsen, “Kinetic Modeling of Intense, Short Laser Pulses Propagating in Tenuous Plasmas,” Phys. Plasmas 4 (1), 217-229 (1997).
doi 10.1063/1.872134
- N. E. Andreev, L. M. Gorbunov, and R. R. Ramazashvili, “Theory of a Three-Dimensional Plasma Wave Excited by a High-Intensity Laser Pulse in an Underdense Plasma,” Plasma Physics Reports 23 (4), 277-284 (1997).
- C. J. R. Sheppard, “Cylindrical Lenses -- Focusing and Imaging: a Review [Invited],” Appl. Opt. 52 (4), 538-545 (2013).
doi 10.1364/AO.52.000538
- O. S. Rozanova and E. V. Chizhonkov, “On the Existence of a Global Solution of a Hyperbolic Problem,” Dokl. Akad. Nauk 492 (1), 97-100 (2020) [Dokl. Math. 101 (3), 254-256 (2020)].
doi 10.1134/S1064562420030163
- O. S. Rozanova and E. V. Chizhonkov, “On the Conditions for the Breaking of Oscillations in a Cold Plasma,” Z. Angew. Math. Phys. 72 (1), Article Number 13 (2021).
doi 10.1007/s00033-020-01440-3
- E. V. Chizhonkov, “Rusanov’s Third-Order Accurate Scheme for Modeling Plasma Oscillations,” Zh. Vychisl. Mat. Mat. Fiz. 63 (5), 864-878 (2023) [Comput. Math. Math. Phys. 63 (5), 905-918 (2023)].
doi 10.1134/S096554252305007X
- J. M. Dawson, “Nonlinear Electron Oscillations in a Cold Plasma,” Phys. Rev. 113 (2), 383-387 (1959).
doi 10.1103/PhysRev.113.383
- N. S. Bakhvalov, A. A. Kornev, and E. V. Chizhonkov, Numerical Methods: Solutions of Problems and Exercises , 2nd ed. (Laboratoriya Znanii, Moscow, 2016) [in Russian].
- R. W. MacCormack, “A Numerical Method for Solving the Equations of Compressible Viscous Flow,” AIAA J. 20 (9), 1275-1281 (1982).
- E. V. Chizhonkov, “On Second-Order Accuracy Schemes for Modeling of Plasma Oscillations,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 21 (1), 115-128 (2020).
doi 10.26089/NumMet.v21r110
- Yu. I. Shokin and N. N. Yanenko, The Method of Differential Approximation. Application to Gas Dynamics (Nauka, Novosibirsk, 1985) [in Russian].
- J. Fürst and P. Furmánek, “An Implicit MacCormack Scheme for Unsteady Flow Calculations,” Comput. Fluids 46 (1), 231-236 (2011).
doi 10.1016/j.compfluid.2010.09.036
- H. Qin, J. Liu, J. Xiao, et al., “Canonical Symplectic Particle-in-Cell Method for Long-Term Large-Scale Simulations of the Vlasov-Maxwell Equations,” Nucl. Fusion 56 (1), Article Number 014001 (2016).
doi 10.1088/0029-5515/56/1/014001
- A. Myers, P. Colella, and B. Van Straalen, “A 4th-Order Particle-in-Cell Method with Phase-Space Remapping for the Vlasov-Poisson Equation,” SIAM J. Sci. Comput. 39 (3), B467-B485 (2017).
doi 10.1137/16M105962X
- R. P. Wilhelm and M. Kirchhart, “An Interpolating Particle Method for the Vlasov-Poisson Equation,” J. Comput. Phys. 473, Article Identifier 111720 (2023).
doi 10.1016/j.jcp.2022.111720