Веб-лаборатория для суперкомпьютерного многомасштабного моделирования задач напыления
Авторы
-
Н. И. Тарасов
-
В. О. Подрыга
-
С. В. Поляков
Ключевые слова:
Веб-лаборатория
цифровая платформа
многомасштабные подходы
автоматизация вычислительных экспериментов
суперкомпьютерные вычисления
Аннотация
Работа посвящена анализу принципов построения веб-лабораторий, предназначенных для суперкомпьютерного математического моделирования сложных физических процессов и явлений. Основными целями подобных цифровых платформ являются: автоматизация вычислительных экспериментов, формирование базы знаний и обеспечение совместной работы исследователей в выбранной предметной области. В работе рассмотрены существующие сегодня решения и принципы построения предметно-ориентированных платформ. На основе выполненного анализа была разработана и практически реализована веб-лаборатория, связанная с решением задач напыления. В работе приведены архитектура и детали программной реализации платформы. Основными ее преимуществами являются возможность динамического встраивания проблемно-ориентированных приложений и удаленных вычислительных ресурсов. Реализованная веб-лаборатория была протестирована посредством проведения серии вычислительных экспериментов по модельным задачам сверхзвукового холодного газодинамического напыления. Также в работе предлагаются направления для последующего развития оригинальной веб-лаборатории.
Раздел
Параллельные программные средства и технологии
Библиографические ссылки
- V. O. Podryga, S. V. Polyakov, N. I. Tarasov, and V. A. Usachev, “Mathematical Modeling the Processes of Supersonic Cold Gas Dynamic Spraying of Nanoparticles on Substrates,” Lobachevskii J. Math. 44 (8), 1918-1928 (2023).
doi 10.1134/S1995080223050487
- Ansys Workbench. Simulation Integration Platform.
https://www.ansys.com/products/ansys-workbench . Cited December 6, 2023.
- A. A. Aksenov, “FlowVision: Industrial Computational Fluid Dynamics,” Comput. Res. Model. 9 (1), 5-20 (2017).
doi 10.20537/2076-7633-2017-9-5-20
- V. O. Podryga, S. V. Polyakov, and N. I. Tarasov, Digital Platform Server for Supercomputer Modeling of Nanoparticle Spraying Processes on Substrates KIAM_DIGITAL_TOOL_SERVER, Version 1 , Certificate of RF Registration of Computer Program No. 2022666958. Date of Registration: September 12, 2022.
- V. O. Podryga, S. V. Polyakov, and N. I. Tarasov, Digital Platform Web-client for Supercomputer Modeling of Nanoparticle Spraying Processes on Substrate KIAM_DIGITAL_TOOL_CLIENT, Version 1 , Certificate of RF Registration of Computer Program No. 2022666957. Date of Registration: September 12, 2022.
- N. I. Tarasov, V. O. Podryga, S. V. Polyakov, and A. V. Timakov, “Digital Platform for Supercomputer Mathematical Modeling of Spraying Processes,” Russ. Digit. Libr. J. 25 (6), 697-721 (2022).
doi 10.26907/1562-5419-2022-25-6-697-721
- TypeScript: JavaScript with Syntax for Types.
https://www.typescriptlang.org/. Cited December 6, 2023.
- S. P. Polyakov, A. P. Demichev, and A. P. Kryukov, “Web Toolkit for Scientific Research: State of the Art and the Prospect for Development,” Procedia Comput. Sci. 66, 429-438 (2015).
doi 10.1016/j.procs.2015.11.049
- A. P. Kryukov, A. P. Demichev, and S. P. Polyakov, “Web Platforms for Scientific Research,” Program. Comput. Softw. 42 (3), 129-141 (2016).
doi 10.1134/S036176881603004X
- Prove.Design.
https://prove.design . Cited December 6, 2023.
- J. Magill, R. Dreher, Z. Sóti, and G. P. Lasché, “Nucleonica: Web-Based Software Tools for Simulation and Analysis,” in Proc. 21st Int. Conf. on Nuclear Energy for New Europe, Ljubljana, Slovenia, September 5-7, 2012.
https://arhiv.djs.si/proc/nene2012/Publication_datoteke/Proceedings/1303.pdf . Cited December 6, 2023.
- pSeven Enterprise.
https://www.pseven.io/product/pseven-enterprise/. Cited December 7, 2023.
- O. Sukhoroslov, S. Volkov, and A. Afanasiev, “A Web-Based Platform for Publication and Distributed Execution of Computing Applications,” in Proc. 14th Int. Symposium on Parallel and Distributed Computing (ISPDC), Limassol, Cyprus, June 29-July 2, 2015.
doi 10.1109/ISPDC.2015.27
- Everest.
https://everest.distcomp.org/apps/list . Cited December 7, 2023.
- M. McLennan and R. Kennell, “HUBzero: A Platform for Dissemination and Collaboration in Computational Science and Engineering,” Comput. Sci. Eng. 12 (2), 48-53 (2010).
doi 10.1109/MCSE.2010.41
- K. Madhavan, L. Zentner, V. Farnsworth, et al., “nanoHUB.org: Cloud-Based Services for Nanoscale Modeling, Simulation, and Education,” Nanotechnol. Rev. 2 (1), 107-117 (2013).
doi 10.1515/ntrev-2012-0043
- S. Steiger, M. Povolotskyi, H.-H. Park, et al., “NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool,” IEEE Trans. Nanotechnol. 10 (6), 1464-1474 (2011).
doi 10.1109/TNANO.2011.2166164
- A. Alber, J. Nabrzyski, and T. Wright, “The HUBzero Platform: Extensions and Impressions,” in Proc. 3rd Int. Workshop on Science Gateways for Life Sciences (IWSG 2011), London, United Kingdom, June 8-10, 2011.
https://ceur-ws.org/Vol-819/paper2.pdf . Cited December 7, 2023.
- D. Mejia, T. Kubis, and G. Klimeck, “NemoViz: a Visual Interactive System for Atomistic Simulations Design,” Vis. Eng. 6, Article Number 6 (2018).
doi 10.1186/s40327-018-0067-4
- B. E. Granger and F. Pérez, “Jupyter: Thinking and Storytelling with Code and Data,” Comput. Sci. Eng. 23 (2), 7-14 (2021).
doi 10.1109/MCSE.2021.3059263
- F. Pérez and B. E. Granger, “IPython: a System for Interactive Scientific Computing,” Comput. Sci. Eng. 9 (3), 21-29 (2007).
doi 10.1109/MCSE.2007.53
- GitHub -- voila-dashboards/voila: Voilá turns Jupyter notebooks into standalone web applications.
https://github.com/voila-dashboards/voila . Cited December 7, 2023.
- R. Thomas and S. Cholia, “Interactive Supercomputing with Jupyter,” Comput. Sci. Eng. 23 (2), 93-98 (2021).
doi 10.1109/MCSE.2021.3059037
- O. I. Samovarov and S. S. Gaysaryan, “The Web-laboratory Architecture Based on the Cloud and the UniHUB Implementation as an Extension of the OpenStack Platform,” Proceedings of the Institute for System Programming of the RAS. 26 (1), 403-420 (2014).
doi 10.15514/ISPRAS-2014-26(1)-17
- S. V. Polyakov, A. V. Vyrodov, D. V. Puzyrkov, and M. V. Yakobovskiy, “Cloud Service for Decision of Multiscale Nanotechnology Problems on Supercomputer Systems,” Proceedings of the Institute for System Programming of the RAS. 27 (6), 409-420 (2015).
doi 10.15514/ISPRAS-2015-27(6)-26
- Electron. Build cross-platform desktop apps with JavaScript, HTML, and CSS.
https://www.electronjs.org/. Cited December 7, 2023.
- TOP500. The List. June 2023.
https://www.top500.org/lists/top500/2023/06/. Cited December 7, 2023.
- SUPPZ.
http://suppz.jscc.ru/. Cited December 7, 2023.
- CKP KIAM RAS.
https://ckp.kiam.ru/?home . Cited December 7, 2023.
- Node.js.
https://nodejs.org/. Cited December 7, 2023.
- NestJS: A progressive Node.js framework.
https://nestjs.com/. Cited December 7, 2023.
- Express: Node.js web application framework.
https://expressjs.com/. Cited December 7, 2023.
- TypeORM: Amazing ORM for TypeScript and JavaScript.
https://typeorm.io/. Cited December 7, 2023.
- Vue.js: The Progressive JavaScript Framework.
https://vuejs.org/. Cited December 7, 2023.
- Quasar Framework.
https://quasar.dev/. Cited December 7, 2023.
- Request for Comments: 6455. The WebSocket Protocol.
https://datatracker.ietf.org/doc/html/rfc6455 . Cited December 7, 2023.
- PM2 - Home.
https://pm2.keymetrics.io/. Cited December 7, 2023.
- Redis.
https://redis.io/. Cited December 7, 2023.
- Git.
https://git-scm.com/. Cited December 7, 2023.
- The Official YAML Web Site.
https://yaml.org/. Cited December 7, 2023.
- Decorator-based transformation, serialization, and deserialization between objects and classes.
https://github.com/typestack/class-transformer . Cited December 7, 2023.
- Decorator-based property validation for classes.
https://github.com/typestack/class-validator . Cited December 7, 2023.
- Markdown Guide.
https://www.markdownguide.org/. Cited December 7, 2023.
- A. A. Bondarenko, E. M. Kononov, O. A. Kosolapov, et al., “Software Package GIMM_NANO,” in Proc. Int. Supercomputer Conf. Scientific Service on the Internet: All Facets of Parallelism, Novorossiysk, Russia, September 23-28, 2013.
http://agora.guru.ru/abrau2013/pdf/333.pdf . Cited December 7, 2023.
- T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Berlin, 2009).
doi 10.1007/978-3-642-00292-2
- V. O. Podryga and S. V. Polyakov, “Multiscale Mathematical Modeling of the Metal Nanoparticles Motion in a Gas Flow,” in Lecture Notes in Computer Science (Springer, Cham, 2019), Vol. 11386, pp. 387-394.
doi 10.1007/978-3-030-11539-5_44
- J. M. Haile, Molecular Dynamics Simulations: Elementary Methods (Wiley, New York, 1992).
- V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer Molecular Modeling of Thermodynamic Equilibrium in Gas-Metal Microsystems,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 16 (1), 123-138 (2015).
doi 10.26089/NumMet.v16r113
- Ansys Fluent. Fluid Simulation Software.
https://www.ansys.com/products/fluids/ansys-fluent . Cited December 7, 2023.
- CFD Module. Simulate Single-Phase and Multiphase Flow.
https://www.comsol.com/cfd-module . Cited December 7, 2023.
- S. V. Polyakov, V. O. Podryga, D. V. Puzyrkov, and T. A. Kudryashova, “Supercomputer Molecular Modeling of Gas-Dynamic Deposition of Nanoparticles onto a Substrate,” in Proc. Int. Conf. on Russian Supercomputing Days, Moscow, Russia, September 24-25, 2018 (Mosk. Gos. Univ., Moscow, 2018), pp. 782-792.
http://russianscdays.org/files/pdf18/782.pdf . Cited December 7, 2023.
- V. Podryga and S. Polyakov, “Atomistic Modeling of Metal Nanocluster Motion Caused by Gas Flow Impact,” Lobachevskii J. Math. 40 (11), 1987-1993 (2019).
doi 10.1134/S1995080219110210
- Visualizer.
https://kitware.github.io/visualizer/. Cited December 7, 2023.
- U. Ayachit, The ParaView Guide: A Parallel Visualization Application (Kitware Inc., Clifton Park, 2015).