DOI: https://doi.org/10.26089/NumMet.v25r107

Алгоритмы корректировки решения для численного моделирования динамики упругопластических, сыпучих и пористых сред

Авторы

  • В. М. Садовский
  • О. В. Садовская

Ключевые слова:

упругопластическое течение
динамика
корректировка Уилкинса
вариационное неравенство

Аннотация

На основе математического аппарата вариационных неравенств разработаны оригинальные корректирующие алгоритмы для численного решения динамических задач теории упругопластического течения Прандтля–Рейсса с произвольным условием пластичности. Применяется метод расщепления по физическим процессам. Аналогичные алгоритмы построены для моделирования динамики сыпучей среды и пористой среды с открытыми порами.


Загрузки

Опубликован

2024-03-01

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Авторы

В. М. Садовский

Институт вычислительного моделирования СО РАН (ИВМ СО РАН)
Академгородок, 50-44, 660036, Красноярск
• главный научный сотрудник

О. В. Садовская

Институт вычислительного моделирования СО РАН (ИВМ СО РАН)
Академгородок, 50-44, 660036, Красноярск
• старший научный сотрудник


Библиографические ссылки

  1. M. L. Wilkins, “Calculation of Elastic-Plastic Flow,” in Methods in Computational Physics Vol. 3: Fundamental Methods in Hydrodynamics (Academic Press, New York, 1964; Mir, Moscow, 1967), pp. 211-263.
  2. M. L. Wilkins, Computer Simulation of Dynamic Phenomena , Ser.: Scientific Computation (Springer, Berlin, 1999).
    doi 10.1007/978-3-662-03885-7
  3. V. G. Bazhenov and V. L. Kotov, Mathematical Modeling of Non-Stationary Processes of Impact and Penetration of Axisymmetric Bodies and Identification of Properties of Ground Media (Fizmatlit, Moscow, 2011) [in Russian].
  4. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solving Many-Dimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].
  5. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Springer, New York, 2003; Nauchnaya Kniga, Novosibirsk, 1998).
    doi 10.1007/978-1-4757-5117-8
  6. S. S. Grigorian, “On Basic Concepts in Soil Dynamics,” Prikl. Mat. Mekh. 24 (6), 1057-1072 (1960) [J. Appl. Math. Mech. 24 (6), 1604-1627 (1960).
    doi 10.1016/0021-8928(60)90013-7]
  7. S. S. Grigorian, “Some Problems of the Mathematical Theory of Deformation and Fracture of Hard Rocks,” Prikl. Mat. Mekh. 31 (4), 643-669 (1967) [J. Appl. Math. Mech. 31 (4), 665-686 (1967).
    doi 10.1016/0021-8928(67)90006-8]
  8. G. V. Ivanov, Yu. M. Volchkov, I. O. Bogulskii, et al., Numerical Solution of Dynamic Elastic-Plastic Problems of Deformable Solids (Sib. Univ. Izd., Novosibirsk, 2002) [in Russian].
  9. V. N. Kukudzhanov, Difference Methods for the Solution of Problems of Mechanics of Deformable Media (MFTI Press, Moscow, 1992) [in Russian].
  10. V. N. Kukudzhanov, Numerical Continuum Mechanics (Fizmatlit, Moscow, 2008; De Gruyter, Berlin, 2013).
    doi 10.1515/9783110273380
  11. L. A. Merzhievskii and A. D. Resnyanskii, “Shock-Wave Processes in Metals,” Fiz. Goreniya Vzryva 20 (5), 114-122 (1984) [Combust. Explos. Shock Waves 20 (5), 580-587 (1984).
    doi 10.1007/BF00782256]
  12. V. N. Nikolaevskii, A Collection of Writings. Geomechanics. Vol. 1: Fracture and Dilatancy, Oil and Gas (Inst. Komp’yut. Issled., Moscow-Izhevsk, 2010) [in Russian].
  13. T. M. Platova, Dynamic Problems of Mechanics of Deformable Media (Tomsk Gos. Univ., Tomsk, 1980) [in Russian].
  14. B. E. Pobedrya, Numerical Methods in the Theory of Elasticity and Plasticity (Mosk. Gos. Univ., Moscow, 1995) [in Russian].
  15. V. M. Fomin, Numerical Modeling of High-Velocity Interaction of Bodies (NSU Press, Novosibirsk, 1982) [in Russian].
  16. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction of Bodies (Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].
  17. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, Shock-Wave Phenomena and the Properties of Condensed Matter , Ser.: Shock Wave and High Pressure Phenomena (Springer, New York, 2004).
    doi 10.1007/978-1-4757-4282-4
  18. V. I. Kondaurov and V. E. Fortov, Fundamentals of Thermomechanics of Condensed Matter (MFTI Press, Moscow, 2002) [in Russian].
  19. V. I. Kondaurov, I. B. Petrov, and A. S. Kholodov, “Numerical Modeling of the Process of Penetration of a Rigid Body of Revolution into an Elastoplastic Barrier,” Zh. Prikl. Mekh. Tekh. Fiz. No. 4, 132-139 (1984) [J. Appl. Mech. Tech. Phys. 25 (4), 625-632 (1984).
    doi 10.1007/BF00910003]
  20. V. D. Ivanov, V. I. Kondaurov, I. B. Petrov, and A. S. Kholodov, “Calculation of Dynamic Deformation and Destruction of Elastic-Plastic Bodies by Grid-Characteristic Methods,” Mat. Model. 2 (11), 10-29 (1990).
  21. V. M. Sadovskii, Discontinuous Solutions in Dynamic Elastic-Plastic Problems (Nauka, Moscow, 1997) [in Russian].
  22. V. M. Sadovskii, “Thermodynamic Consistency and Mathematical Well-Posedness in the Theory of Elastoplastic, Granular, and Porous Materials,” Zh. Vychisl. Mat. Mat. Fiz. 60 (4), 738-751 (2020) [Comput. Math. Math. Phys. 60 (4), 723-736 (2020).
    doi 10.1134/S0965542520040156]
  23. K. Grossman and A. A. Kaplan, Nonlinear Programming on the Basis of Unconditional Minimization (Nauka, Novosibirsk, 1981) [in Russian].
  24. B. T. Polyak, Introduction to Optimization (Optimization Software, New York, 1987; Nauka, Moscow, 1983).
  25. O. Sadovskaya and V. Sadovskii, Mathematical Modeling in Mechanics of Granular Materials , in Advanced Structured Materials , Vol. 21 (Springer, Berlin, 2012; Fizmatlit, Moscow, 2008).
    doi 10.1007/978-3-642-29053-4
  26. E. M. Vikhtenko, G. Woo, and R. V. Namm, “On the Convergence of the Uzawa Method with a Modified Lagrangian Functional for Variational Inequalities in Mechanics,” Zh. Vychisl. Mat. Mat. Fiz. 50 (8), 1357-1366 (2010) [Comput. Math. Math. Phys. 50 (8), 1289-1298 (2010).
    doi 10.1134/S0965542510080026]
  27. A. V. Zhiltsov and R. V. Namm, “The Lagrange Multiplier Method in the Finite Convex Programming Problem,” Dal’nevost. Mat. Zh. 15 (1), 53-60 (2015).